98 research outputs found

    Fabry-Perot observations of comet Kohoutek

    Get PDF
    Observations of H alpha, H20(+), and emission lines from comet Kohoutek were made. Analyses of H alpha line profiles and line intensities indicate that the mean outflow velocity of the hydrogen atoms was 7.8 + or - 0.2 km s(-1) and that the hydrogen atom production rate varied for comet-sun distances between 1 AU and 0.4 AU. The identification of an H20(+) emission feature in certain H alpha scans indicates that the H20(+) ions were moving in a tailward direction with a velocity of 20 to 40 km s(-1) with respect to the comet nucleus. An upper limit of 1 part in 100 was found for the D/H ratio in the cometary atomic hydrogen cloud

    Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1

    Get PDF
    Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense

    Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1

    Get PDF
    Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α–β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4’s α-helices are membrane disruptive, while XCL1’s helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a β-sheet dimer and the α–β chemokine structure). Here, we investigate XCL1’s antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular “Swiss army knife” that can refold into different structures for distinct context-dependent functions: whereas the α–β chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the β-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1’s β-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense

    Circulating Levels of Tissue Factor Microparticle Procoagulant Activity Are Reduced With Antiretroviral Therapy and Are Associated With Persistent Inflammation and Coagulation Activation Among HIV-Positive Patients

    Get PDF
    Activation of coagulation pathways may contribute to risk for non-AIDS related conditions among HIV positive patients. We measured tissue factor-dependent procoagulant activity on circulating microparticles (MP-TF) in the plasma of 163 HIV positive participants, both untreated and treated, with viral suppression. MP-TF activity was 39% lower among treated versus untreated participants (p<0.001), which persisted in adjusted models (−36%; p=0.03). Among treated participants, MP-TF activity correlated modestly with D-dimer (r=0.24; p=0.01), vWF (r=0.36; p<0.001), and IL-6 (r=0.20; p=0.04) levels. Future research should focus on mechanisms driving residual functional TF activity and whether these alterations have clinical consequences for non-AIDS defining complications

    DNA mimicry by a high-affinity anti-NF-κB RNA aptamer

    Get PDF
    The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p502 form of NF-κB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-κB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA

    Prevalence and Clinical Significance of HIV Drug Resistance Mutations by Ultra-Deep Sequencing in Antiretroviral-Naïve Subjects in the CASTLE Study

    Get PDF
    CASTLE compared the efficacy of atazanavir/ritonavir with lopinavir/ritonavir, each in combination with tenofovir-emtricitabine in ARV-naïve subjects from 5 continents.Determine the baseline rate and clinical significance of TDR mutations using ultra-deep sequencing (UDS) in ARV-naïve subjects in CASTLE.A case control study was performed on baseline samples for all 53 subjects with virologic failures (VF) at Week 48 and 95 subjects with virologic successes (VS) randomly selected and matched by CD4 count and viral load. UDS was performed using 454 Life Sciences/Roche technology.Of 148 samples, 141 had successful UDS (86 subtype B, 55 non-B subtypes). Overall, 30.5% of subjects had a TDR mutation at baseline; 15.6% only had TDR(s) at <20% of the viral population. There was no difference in the rate of TDRs by B (30.2%) or non-B subtypes (30.9%). VF (51) and VS (90) had similar rates of any TDRs (25.5% vs. 33.3%), NNRTI TDRs (11.1% vs.11.8%) and NRTI TDRs (24.4% vs. 25.5%). Of 9 (6.4%) subjects with M184V/I (7 at <20% levels), 6 experienced VF. 16 (11.3%) subjects had multiple TAMs, and 7 experienced VF. 3 (2.1%) subjects had both multiple TAMs+M184V, and all experienced VF. Of 14 (9.9%) subjects with PI TDRs (11 at <20% levels): only 1 experienced virologic failure. The majority of PI TDRs were found in isolation (e.g. 46I) at <20% levels, and had low resistance algorithm scores.Among a representative sample of ARV-naïve subjects in CASTLE, TDR mutations were common (30.5%); B and non-B subtypes had similar rates of TDRs. Subjects with multiple PI TDRs were infrequent. Overall, TDRs did not affect virologic response for subjects on a boosted PI by week 48; however, a small subset of subjects with extensive NRTI backbone TDR patterns experienced virologic failure

    High dose oral rifampicin to improve survival from adult tuberculous meningitis: A randomised placebo-controlled double-blinded phase III trial (the HARVEST study)

    Get PDF
    Background: Tuberculous meningitis (TBM), the most severe form of tuberculosis (TB), results in death or neurological disability in &gt;50%, despite World Health Organisation recommended therapy. Current TBM regimen dosages are based on data from pulmonary TB alone. Evidence from recent phase II pharmacokinetic studies suggests that high dose rifampicin (R) administered intravenously or orally enhances central nervous system penetration and may reduce TBM associated mortality. We hypothesize that, among persons with TBM, high dose oral rifampicin (35 mg/kg) for 8 weeks will improve survival compared to standard of care (10 mg/kg), without excess adverse events. Protocol: We will perform a parallel group, randomised, placebo-controlled, double blind, phase III multicentre clinical trial comparing high dose oral rifampicin to standard of care. The trial will be conducted across five clinical sites in Uganda, South Africa and Indonesia. Participants are HIV-positive or negative adults with clinically suspected TBM, who will be randomised (1:1) to one of two arms: 35 mg/kg oral rifampicin daily for 8 weeks (in combination with standard dose isoniazid [H], pyrazinamide [Z] and ethambutol [E]) or standard of care (oral HRZE, containing 10 mg/kg/day rifampicin). The primary end-point is 6-month survival. Secondary end points are: i) 12-month survival ii) functional and neurocognitive outcomes and iii) safety and tolerability. Tertiary outcomes are: i) pharmacokinetic outcomes and ii) cost-effectiveness of the intervention. We will enrol 500 participants over 2.5 years, with follow-up continuing until 12 months post-enrolment. Discussion: Our best TBM treatment still results in unacceptably high mortality and morbidity. Strong evidence supports the increased cerebrospinal fluid penetration of high dose rifampicin, however conclusive evidence regarding survival benefit is lacking. This study will answer the important question of whether high dose oral rifampicin conveys a survival benefit in TBM in HIV-positive and -negative individuals from Africa and Asia. Trial registration: ISRCTN15668391 (17/06/2019

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link
    corecore