907 research outputs found

    Dynamic scaling of fronts in the quantum XX chain

    Full text link
    The dynamics of the transverse magnetization in the zero-temperature XX chain is studied with emphasis on fronts emerging from steplike initial magnetization profiles. The fronts move with fixed velocity and display a staircase like internal structure whose dynamic scaling is explored both analytically and numerically. The front region is found to spread with time sub-diffusively with the height and the width of the staircase steps scaling as t^(-1/3) and t^1/3, respectively. The areas under the steps are independent of time, thus the magnetization relaxes in quantized "steps" of spin-flips.Comment: 4 pages, 3 eps figures, RevTe

    Multidimensional NMR identifies the conformational shift essential for catalytic competence in the 60-kDa Drosophila melanogaster dUTPase trimer

    Get PDF
    The catalytic mechanism of dUTP pyrophosphatase (dUTPase), responsible for the prevention of uracil incorporation into DNA, involves ordering of the flexible C terminus of the enzyme. This conformational shift is investigated by multidimensional NMR on the Drosophila enzyme. Flexible segments of the homotrimer give rise to sharp resonances in the H-1-N-15 heteronuclear single-quantum coherence (HSQC) spectra, which are clearly distinguishable from the background resonances of the well folded protein globule. Binding of the product dUMP or the analogues dUDP and alpha,beta-imino-dUTP to the enzyme induces a conformational change reflected in the disappearance of eight sharp resonances. This phenomenon is interpreted as nucleotide binding-induced ordering of some residues upon the folded protein globule. Three-dimensional N-15-edited H-1-N-15 HSQC total correlation spectroscopy (TOCSY) and H-1-N-15 HSQC nuclear Overhauser effect spectroscopy measurements allowed clear assignment of these eight specific resonance peaks. The residues identified correspond to the conserved C-terminal sequence motif, indicating that (i) this conformational shift is amenable to NMR studies in solution even in the large trimeric molecule and (ii) formation of the closed enzyme conformer in the case of the Drosophila enzyme does not require the complete triphosphate chain of the substrate. NMR titration of the enzyme with the nucleotide ligands as well as kinetic data indicated significant deviation from the model of independent active sites within the homotrimer. The results suggest allosterism in the eukaryotic dUTPase

    STUDY OF THE EARLY ROOT DEVELOPMENT OF IMPORTANT ARABLE GRASS WEEDS IN MAIZE I. LARGE CRABGRASS (DIGITARIA SANGUINALIS (L.) SCOP)

    Get PDF
    We have studied the primary root development of the one of the most important grass weeds - large crabgrass (Digitaria sanguinalis (L.) Scop). The primary, secondary and tertiary root development was studied in laboratory (thermostat), and in pots in 1994, 1995 and 1997. Each year we sowed the seeds 1 cm deep in the pots separately. The number of days required for the change of the early root system from the sowing 17 - 24 days. The average leaf number in the root change period was 4 and varied in between 3 to 5. We also observed that the date of sowing during the summer months (June, July and August) did not influence the change of the early root system

    e+ee^{+}e^{-} pairs from a nuclear transition signaling an elusive light neutral boson

    Full text link
    Electron-positron pairs have been observed in the 10.95-MeV 00+0^-\to0^+ decay in 16^{16}O. The branching ratio of the e+^+e^- pairs compared to the 3.84-MeV 02+0^-\to2^+ γ\gamma decay of the level is deduced to be 20(5)×10520(5)\times10^{-5}. This magnetic monopole (M0) transition cannot proceed by γ\gamma-ray decay and is, to first order, forbidden for internal pair creation. However, the transition may also proceed by the emission of a light neutral 00^{-} or 1+1^{+} boson. Indeed, we do observe a sharp peak in the e+ee^{+}e^{-} angular correlation with all the characteristics belonging to the intermediate emission of such a boson with an invariant mass of 8.5(5) MeV/c2^2. It may play a role in the current quest for light dark matter in the universe.Comment: 6 page

    Observation of Anomalous Internal Pair Creation in 8^8Be: A Possible Signature of a Light, Neutral Boson

    Full text link
    Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state (Jπ=1+J^\pi=1^+, T=1T=1) \rightarrow ground state (Jπ=0+J^\pi=0^+, T=0T=0) and the isoscalar magnetic dipole 18.15 MeV (Jπ=1+J^\pi=1^+, T=0T=0) state \rightarrow ground state transitions in 8^{8}Be. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ> 5\sigma. This observation might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35\pm0.35 (stat)±0.5\pm 0.5 (sys) MeV/c2/c^2 and Jπ=1+J^\pi = 1^+ was created.Comment: 5 pages, 5 figure

    Proton decay from the isoscalar giant dipole resonance in 58^{58}Ni

    Full text link
    Proton decay from the 3ω\hbar\omega isoscalar giant dipole resonance (ISGDR) in 58^{58}Ni has been measured using the (α,αp\alpha,\alpha'p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered α\alpha particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of 57^{57}Co have been determined, and the results compared to predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in 57^{57}Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.Comment: Minor changes after review. Accepted for publication in Phys. Rev. C. 19 pages; 7 figure

    A multi-detector array for high energy nuclear e+e- pair spectrosocopy

    Full text link
    A multi-detector array has been constructed for the simultaneous measurement of energy- and angular correlation of electron-positron pairs produced in internal pair conversion (IPC) of nuclear transitions up to 18 MeV. The response functions of the individual detectors have been measured with mono-energetic beams of electrons. Experimental results obtained with 1.6 MeV protons on targets containing 11^{11}B and 19^{19}F show clear IPC over a wide angular range. A comparison with GEANT simulations demonstrates that angular correlations of e+ee^+e^- pairs of transitions in the energy range between 6 and 18 MeV can be determined with sufficient resolution and efficiency to search for deviations from IPC due to the creation and subsequent decay into e+ee^+e^- of a hypothetical short-lived neutral boson.Comment: 20 pages, 8 figure
    corecore