12 research outputs found

    Sialic acid-binding immunoglobulin-like lectin (Sigelac)-15 is a rapidly internalised cell-surface antigen expressed by acute myeloid leukaemia cells.

    Get PDF
    Funder: )Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 has recently been identified as a critical tumour checkpoint, augmenting the expression and function of programmed death-ligand 1. We raised a monoclonal antibody, A9E8, specific for Siglec-15 using phage display. A9E8 stained myeloid leukaemia cell lines and peripheral cluster of differentiation (CD)33+ blasts and CD34+ leukaemia stem cells from patients with acute myeloid leukaemia (AML). By contrast, there was minimal expression on healthy donor leucocytes or CD34+ stem cells from non-AML donors, suggesting targeting Siglec-15 may have significant therapeutic advantages over its fellow Siglec CD33. After binding, A9E8 was rapidly internalised (half-life of 180 s) into K562 cells. Antibodies to Siglec-15 therefore hold therapeutic potential for AML treatment

    Unified classification and risk-stratification in Acute Myeloid Leukemia.

    Get PDF
    Clinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time. Secondary AML-2, emerges as the second largest class (24%), associates with high-risk disease, poor prognosis irrespective of flow Minimal Residual Disease (MRD) negativity, and derives significant benefit from transplantation. Guided by class membership we derive a 3-tier risk-stratification score that re-stratifies 26% of patients as compared to standard of care. This results in a unified framework for disease classification and risk-stratification in AML that relies on information from cytogenetics and 32 genes. Last, we develop an open-access patient-tailored clinical decision support tool

    The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia

    No full text
    Activating mutations in tyrosine kinases have been identified in hematopoietic and nonhematopoietic malignancies. Recently, we and others identified a single recurrent somatic activating mutation (JAK2V617F) in the Janus kinase 2 (JAK2) tyrosine kinase in the myeloproliferative disorders (MPDs) polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. We used direct sequence analysis to determine if the JAK2V617F mutation was present in acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML)/atypical chronic myelogenous leukemia (aCML), myelodysplastic syndrome (MDS), B-lineage acute lymphoblastic leukemia (ALL), T-cell ALL, and chronic lymphocytic leukemia (CLL). Analysis of 222 patients with AML identified JAK2V617F mutations in 4 patients with AML, 3 of whom had a preceding MPD. JAK2V617F mutations were identified in 9 (7.8%) of 116 CMML/a CML samples, and in 2 (4.2%) of 48 MDS samples. We did not identify the JAK2V617F disease allele in B-lineage ALL (n = 83), T-cell ALL (n = 93), or CLL (n = 45). These data indicate that the JAK2V617F allele is present in acute and chronic myeloid malignancies but not in lymphoid malignancies

    Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells

    No full text
    The relationship between the cells that initiate cancer and the cancer stem-like cells that propagate tumors has been poorly defined. In a human prostate tissue transformation model, basal cells expressing the oncogenes Myc and myristoylated AKT can initiate heterogeneous tumors. Tumors contain features of acinar-type adenocarcinoma with elevated eIF4E-driven protein translation and squamous cell carcinoma marked by activated beta-catenin. Lentiviral integration site analysis revealed that alternative histological phenotypes can be clonally derived from a common cell of origin. In advanced disease, adenocarcinoma can be propagated by self-renewing tumor cells with an androgen receptor-low immature luminal phenotype in the absence of basal-like cells. These data indicate that advanced prostate adenocarcinoma initiated in basal cells can be maintained by luminal-like tumor-propagating cells. Determining the cells that maintain human prostate adenocarcinoma and the signaling pathways characterizing these tumor-propagating cells is critical for developing effective therapeutic strategies against this population

    Stem cells in cancer initiation and progression

    No full text
    While standard therapies can lead to an initial remission of aggressive cancers, they are often only a transient solution. The resistance and relapse that follows is driven by tumor heterogeneity and therapy-resistant populations that can reinitiate growth and promote disease progression. There is thus a significant need to understand the cell types and signaling pathways that not only contribute to cancer initiation, but also those that confer resistance and drive recurrence. Here, we discuss work showing that stem cells and progenitors may preferentially serve as a cell of origin for cancers, and that cancer stem cells can be key in driving the continued growth and &nbsp;functional heterogeneity of established cancers. We also describe emerging evidence for the role of developmental signals in cancer initiation, propagation, and therapy resistance and discuss how targeting these pathways may be of therapeutic value
    corecore