21,917 research outputs found

    Interactions between toothbrush and toothpaste particles during simulated abrasive cleaning

    Get PDF
    Most people clean their teeth using toothpaste, consisting of abrasive particles in a carrier fluid, and a filament based toothbrush to remove plaque and stain. In order to optimise cleaning efficiency it is important to understand how toothbrush filaments, abrasive particles and fluid interact in a tooth cleaning contact. Work has been carried out to visualise, simulate, and model the processes in teeth cleaning. Laboratory cleaning contacts were created between a toothbrush and a transparent surface. Video and short duration flash photography were used to study the processes by which a toothbrush traps abrasive particles, loads them against the counterface, and removes material. Small abrasive particles tend to be trapped at the contact between the filament tip and the counterface, whilst larger particles are trapped by clumps of filaments or at the contact with the side of a bent filament. Measurements of brush friction force were recorded during cleaning for a range of operating conditions. The presence of abrasive particles in the cleaning mixture increased the coefficient of friction, but the absolute particle concentration showed a lesser effect. It is surmised that only a few particles carry any load and cause any abrasion; increasing the particle concentration does not directly increase the number of load bearing particles. Abrasive scratch tests were also carried out, using PMMA as a wearing substrate. The scratches produced during these tests were studied. The microscopy images were used to deduce how the filaments deflect and drag, and how particles are trapped by filaments and scratch the surface. Again, it was observed that few of the brush filaments loaded particles to produce scratches, and that when a filament changes direction of travel the trapped particle is lost. Results of these studies were used to develop both qualitative and quantitative models of the process by which material is removed in teeth cleaning. The quantitative model contains, by necessity, several empirical factors, but nonetheless predictions compare well with in vitro wear results from the literature. The results were also used to draw some broad conclusions on appropriate brushing techniques for optimum tooth cleaning

    Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate

    Get PDF
    Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new compact continuum sources. Three of the new sources are coincident with previously-identified water masers. Together with the previously-known sources, these data bring the number of likely protocluster members to 25 for a protostellar density of ~700 pc^-3. Our preliminary measurement of the Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a uniform volume distribution. All of the (nine) sources with detections at multiple frequencies have SEDs consistent with dust emission, and two (SMA1b and SMA4) also have long wavelength emission consistent with a central hypercompact HII region. Thermal spectral line emission, including CH3CN, is detected in six sources: LTE model fitting of CH3CN(J=12-11) yields temperatures of 72-373K, confirming the presence of multiple hot cores. The fitted LSR velocities range from -3.3 to -7.0 km/s, with an unbiased mean square deviation of 2.05 km/s, implying a dynamical mass of 410+-260 Msun for the protocluster. From analysis of a wide range of hot core molecules, the kinematics of SMA1b are consistent with a rotating, infalling Keplerian disk of diameter 800AU and enclosed mass of 10-30 Msun that is perpendicular (within 1 degree) to the large-scale bipolar outflow axis. A companion to SMA1b at a projected separation of 0.45" (590AU; SMA1d), which shows no evidence of spectral line emission, is also confirmed. Finally, we detect one 218.440GHz and several 229.7588GHz Class-I methanol masers.Comment: 54 pages, 11 figures. Accepted for publication in The Astrophysical Journal. Version 2: Keywords updated, and three "in press" citations updated to journal reference. Version 3: corrected the error in the quantum numbers of the 218 GHz methanol transition in the text and in Table 8. For a PDF version with full-resolution figures, see http://www.cv.nrao.edu/~thunter/papers/ngc6334in2014.pd

    Type I Superconductivity in YbSb2 Single Crystals

    Get PDF
    We present evidence of type I superconductivity in YbSb2 single crystals, from DC and AC magnetization, heat capacity and resistivity measurements. The critical temperature and critical field are determined to be Tc≈T_c\approx 1.3 K and Hc≈H_c\approx 55 Oe. A small Ginzburg-Landau parameter \kappa = 0.05, together with typical magnetization isotherms of type I superconductors, small critical field values, a strong Differential Paramagnetic Effect (DPE) signal, and a field-induced change from second to first order phase transition, confirm the type I nature of the superconductivity in YbSb2. A possible second superconducting state is observed in the radiofrequency (RF) susceptibility measurements, with Tc(2)≈T_{c}^{(2)}\approx 0.41 K and Hc(2)≈H_{c}^{(2)}\approx 430 Oe.Comment: 6 pages, 10 figure

    Unstable Disk Galaxies. I. Modal Properties

    Full text link
    I utilize the Petrov-Galerkin formulation and develop a new method for solving the unsteady collisionless Boltzmann equation in both the linear and nonlinear regimes. In the first order approximation, the method reduces to a linear eigenvalue problem which is solved using standard numerical methods. I apply the method to the dynamics of a model stellar disk which is embedded in the field of a soft-centered logarithmic potential. The outcome is the full spectrum of eigenfrequencies and their conjugate normal modes for prescribed azimuthal wavenumbers. The results show that the fundamental bar mode is isolated in the frequency space while spiral modes belong to discrete families that bifurcate from the continuous family of van Kampen modes. The population of spiral modes in the bifurcating family increases by cooling the disk and declines by increasing the fraction of dark to luminous matter. It is shown that the variety of unstable modes is controlled by the shape of the dark matter density profile.Comment: Accepted for publication in The Astrophysical Journa

    Parallel pull flow: A new lean production design

    Get PDF
    This case study is #2 in a series of studies that relate specifically to the development and application of lean manufacturing techniques for the furniture and wood component supplying industries. Case study #2 is an example of how productivity can be increased in a furniture manufacturing organization by using a new lean production design termed Parallel Pull Flow (PPF). This case study provides information about lean manufacturing and how a lean manufacturing system can be implemented, followed by a detailed case study of a furniture manufacturing company’s adoption of a new final assembly PPF lean production system

    The complementary niches of anthropocentric and biocentric conservationists

    Get PDF
    A divergence of values has become apparent in recent debates between conservationists who focus on ecosystem services that can improve human well-being and those who focus on avoiding the extinction of species. These divergent points of view fall along

    Critical Casimir interaction of ellipsoidal colloids with a planar wall

    Full text link
    Based on renormalization group concepts and explicit mean field calculations we study the universal contribution to the effective force and torque acting on an ellipsoidal colloidal particle which is dissolved in a critical fluid and is close to a homogeneous planar substrate. At the same closest distance between the substrate and the surface of the particle, the ellipsoidal particle prefers an orientation parallel to the substrate and the magnitude of the fluctuation induced force is larger than if the orientation of the particle is perpendicular to the substrate. The sign of the critical torque acting on the ellipsoidal particle depends on the type of boundary conditions for the order parameter at the particle and substrate surfaces, and on the pivot with respect to which the particle rotates

    The Double-D cell for assembling hardware in upholstered furniture production

    Get PDF
    This is the first case study in a series of studies that relate specifically to the development and application of lean manufacturing techniques of furniture and wood component supplying industries. Case study one is an example of how a subassembly process in an upholstered furniture facility was re-configured from a traditional flow line to a “Double-D” manufacturing cell. This case study provides general information about lean manufacturing and how a lean manufacturing system can be implemented, followed by a detailed description of Franklin Corporation’s adoption of a new type of manufacturing cell—the “Double-D”. A discussion of the original state of the subassembly system and the result of the Double-D modifications are also given
    • …
    corecore