19 research outputs found
Racism as a determinant of health: a systematic review and meta-analysis
Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
fisheries and tourism social economic and ecological trade offs in coral reef systems
Coastal communities are exerting increasingly more pressure on coral reef ecosystem services in the Anthropocene. Balancing trade-offs between local economic demands, preservation of traditional values, and maintenance of both biodiversity and ecosystem resilience is a challenge for reef managers and resource users. Consistently, growing reef tourism sectors offer more lucrative livelihoods than subsistence and artisanal fisheries at the cost of traditional heritage loss and ecological damage. Using a systematic review of coral reef fishery reconstructions since the 1940s, we show that declining trends in fisheries catch and fish stocks dominate coral reef fisheries globally, due in part to overfishing of schooling and spawning-aggregating fish stocks vulnerable to exploitation. Using a separate systematic review of coral reef tourism studies since 2013, we identify socio-ecological impacts and economic opportunities associated to the industry. Fisheries and tourism have the potential to threaten the ecological stability of coral reefs, resulting in phase shifts toward less productive coral-depleted ecosystem states. We consider whether four common management strategies (unmanaged commons, ecosystem-based management, co-management, and adaptive co-management) fulfil ecological conservation and socioeconomic goals, such as living wage, job security, and maintenance of cultural traditions. Strategies to enforce resource exclusion and withhold traditional resource rights risk social unrest; thus, the coexistence of fisheries and tourism industries is essential. The purpose of this chapter is to assist managers and scientists in their responsibility to devise implementable strategies that protect local community livelihoods and the coral reefs on which they rely
FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients
Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes
Effective environmental management requires monitoring programmes that provide specific links between changes in environmental conditions and ecosystem health. This article reviews the suitability of a range of bioindicators for use in monitoring programmes that link changes in water quality to changes in the condition of coral-reef ecosystems. From the literature, 21 candidate bioindicators were identified, whose responses to changes in water quality varied spatially and temporally; responses ranged from rapid (hours) changes within individual corals to long-term (years) changes in community composition. From this list, the most suitable bioindicators were identified by determining whether responses were (i) specific, (ii) monotonic, (iii) variable, (iv) practical and (v) ecologically relevant to management goals. For long-term\ud
monitoring programmes that aim to quantify the effects of\ud
chronic changes in water quality, 11 bioindicators were\ud
selected: symbiont photophysiology, colony brightness,\ud
tissue thickness and surface rugosity of massive corals,\ud
skeletal elemental and isotopic composition, abundance of\ud
macro-bioeroders, micro- and meiobenthic organisms such\ud
as foraminifera, coral recruitment, macroalgal cover, taxonomic richness of corals and the maximal depth of coralreef development. For short-term monitoring programmes,\ud
or environmental impact assessments that aim to quantify \ud
the effects of acute changes in water quality, a subset of\ud
seven of these bioindicators were selected, including partial mortality. Their choice will depend on the specific objectives and the timeframe available for each monitoring\ud
programme. An assessment framework is presented to assist in the selection of bioindicators to quantify the effects of changing water quality on coral-reef ecosystems
The importance of structural complexity in coral reef ecosystems\ud
The importance of structural complexity in coral reefs has come to the fore with the global degradation of reef condition; however, the limited scale and replication of many studies have restricted our understanding of the role of complexity in the ecosystem. We qualitatively and quantitatively (where sufficient standardised data were available) assess the literature regarding the role of structural complexity in coral reef ecosystems. A rapidly increasing number of publications have studied the role of complexity in reef ecosystems over the past four decades, with a concomitant increase in the diversity of methods used to quantify structure. Quantitative analyses of existing data indicate a strong negative relationship between structural complexity and algal cover, which may reflect the important role complexity plays in enhancing herbivory by reef fishes. The cover of total live coral and branching coral was positively correlated with structural complexity. These habitat attributes may be creating much of the structure, resulting in a collinear relationship; however, there is also evidence of enhanced coral recovery from disturbances where structural complexity is high. Urchin densities were negatively correlated with structural complexity; a relationship that may be driven by urchins eroding reef structure or by their gregarious behaviour when in open space. There was a strong positive relationship between structural complexity and fish density and biomass, likely mediated through density-dependent competition and refuge from predation. More variable responses were found when assessing individual fish families, with all families examined displaying a positive relationship to structural complexity, but only half of these relationships were significant. Although only corroborated with qualitative data, structural complexity also seems to have a positive effect on two ecosystem services: tourism and shoreline protection. Clearly, structural complexity is an integral component of coral reef ecosystems, and it should be incorporated into monitoring programs and management objectives
Impacts of pollution on marine life in Southeast Asia
10.1007/s10531-010-9778-0Biodiversity and Conservation1941063-1082BONS