2,955 research outputs found

    Simulation of glancing shock wave and boundary layer interaction

    Get PDF
    Shock waves generated by sharp fins, glancing across a laminar boundary layer growing over a flat plate, are simulated numerically. Several basic issues concerning the resultant three-dimensional flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of grid resolution on the origin of the line of separation. Various shock strengths (generated by different fin angles) are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of the secondary separation. The usual interpretations of the flow field from previous studies and new interpretations arising from the present simulation are discussed

    Computation of separation ahead of blunt fin in supersonic turbulent flow

    Get PDF
    Separation ahead of a flat-face blunt fin in a supersonic turbulent boundary layer was studied numerically. The following observations and conclusions were made: (1) the length of separation increases to about 5.2 D, compared with about 2.0 to 2.5 D for the typical hemi-cylindrical results, and this numerical result confirms experimental observation; (2) even though there is a kink in pressure in the present case, there is no secondary separation under the main horseshoe vortices and there are three vortices, leading to the conclusion that the number of vortices is not always an even number; and (3) for the case investigated the separation point is connected to the inner (first) horseshoe vortex, rather than the outer (second) one. The four layers of fluid entrain in the three vortices, respectively

    Computation of Navier-Stokes equations for three-dimensional flow separation

    Get PDF
    Supersonic flows over a sharp and a flat-faced blunt fin mounted on a flat plate are simulated numerically. Several basic issues involved in the resultant three-dimensional steady flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of a grid resolution on the origin of the line of separation. Various shock strengths are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of secondary separation. The length of separation ahead of the flat-faced blunt fin, bifurcation of a horseshoe vortex, and the accessibility of a closed-type separation are investigated. The usual interpretation of the flow field from previous studies and new interpretations arising from the present simulation are discussed

    High fat diet deviates PtC-specific B1 B cell phagocytosis in obese mice

    Get PDF
    Phagocytosis had been attributed predominantly to "professional" phagocytes such as macrophages, which play critical roles in adipose tissue inflammation. However, recently, macrophage-like phagocytic activity has been reported in B1 B lymphocytes. Intrigued by the long-established correlation between high fat diet (HFD)-induced obesity and immune dysfunction, we investigated how HFD affects B1 B cell phagocytosis. A significant number of B1 B cells recognize phosphatidylcholine (PtC), a common phospholipid component of cell membrane. We report here that unlike macrophages, B1 B cells have a unique PtC-specific phagocytic function. In the presence of both PtC-coated and non-PtC control fluorescent nano-particles, B1 B cells from healthy lean mice selectively engulfed PtC-coated beads, whereas B1 B cells from HFD-fed obese mice non-discriminately phagocytosed both PtC-coated and control beads. Morphologically, B1 B cells from obese mice resembled macrophages, displaying enlarged cytosol and engulfed more beads. Our study suggests for the first time that HFD can affect B1 B cell phagocytosis, substantiating the link of HFD-induced obesity and immune deviation.R21 AR063387 - NIAMS NIH HHS; R25 CA153955 - NCI NIH HHS; UL1 TR000157 - NCATS NIH HH

    By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans.

    Get PDF
    Pigmentation evolved in ancestral humans to protect against toxic, ultraviolet B irradiation, but the question remains: "what is being protected?" Because humans with dark pigmentation display a suite of superior epidermal functions in comparison with their more lightly pigmented counterparts, we hypothesized and provided evidence that dark pigmentation evolved in Africa to support cutaneous function. Because our prior clinical studies also showed that a restoration of a competent barrier dampens cutaneous inflammation, we hypothesized that resistance to inflammation could have provided pigmented hominins with yet another, important evolutionary benefit. We addressed this issue here in two closely related strains of hairless mice, endowed with either moderate (Skh2/J) or absent (Skh1) pigmentation. In these models, we showed that (a) pigmented mice display a markedly reduced propensity to develop inflammation after challenges with either a topical irritant or allergen in comparison with their nonpigmented counterparts; (b) visible and histologic evidence of inflammation was paralleled by reduced levels of pro-inflammatory cytokines (i.e., IL-1α and INFα); (c) because depigmentation of Skh2/J mouse skin enhanced both visible inflammation and pro-inflammatory cytokine levels after comparable pro-inflammatory challenges, the reduced propensity to develop inflammation was directly linked to the presence of pigmentation; and (d) furthermore, in accordance with our prior work showing that pigment production endows benefits by reducing the surface pH of skin, acidification of albino (Skh1) mouse skin also protected against inflammation, and equalized cytokine levels to those found in pigmented skin. In summary, pigmentation yields a reduced propensity to develop inflammation, consistent with our hypothesis that dark pigmentation evolved in ancestral humans to provide a suite of barrier-linked benefits that now include resistance to inflammation
    corecore