4,795 research outputs found
Evolution of Baryon-Free Matter Produced in Relativistic Heavy-Ion Collisions
A 3-fluid hydrodynamic model is introduced for simulating heavy-ion
collisions at incident energies between few and about 200 AGeV. In addition to
the two baryon-rich fluids of 2-fluid models, the new model incorporates a
third, baryon-free (i.e. with zero net baryonic charge) fluid which is created
in the mid-rapidity region. Its evolution is delayed due to a formation time
, during which the baryon-free fluid neither thermalizes nor interacts
with the baryon-rich fluids. After formation it thermalizes and starts to
interact with the baryon-rich fluids. It is found that for =0 the
interaction strongly affects the baryon-free fluid. However, at reasonable
finite formation time, =1 fm/c, the effect of this interaction turns out
to be substantially reduced although still noticeable. Baryonic observables are
only slightly affected by the interaction with the baryon-free fluid.Comment: 17 pages, 3 figures, submitted to the issue of Phys. of Atomic Nuclei
dedicated to S.T. Belyaev on the occasion of his 80th birthday, typos
correcte
Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions
Recently reported transverse momentum distributions of strange hadrons
produced in Pb(158AGeV) on Pb collisions and corresponding results from the
relativistic quantum molecular dynamics (RQMD) approach are examined. We argue
that the experimental observations favor a scenario in which multi-strange
hadrons are formed and decouple from the system rather early at large energy
densities (around 1 GeV/fm). The systematics of the strange and non-strange
particle spectra indicate that the observed transverse flow develops mainly in
the late hadronic stages of these reactions.Comment: 4 pages, 4 figure
Neutron scattering and superconducting order parameter in YBa2Cu3O7
We discuss the origin of the neutron scattering peak at 41 meV observed in
YBaCuO below . The peak may occur due to spin-flip electron
excitations across the superconducting gap which are enhanced by the
antiferromagnetic interaction between Cu spins. In this picture, the experiment
is most naturally explained if the superconducting order parameter has -wave
symmetry and opposite signs in the bonding and antibonding electron bands
formed within a CuO bilayer.Comment: In this version, only few minor corrections and the update of
references were done in order to make perfect correspondence with the
published version. RevTeX, psfig, 5 pages, and 3 figure
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
The reliable detection of single quantum particles has revolutionized the
field of quantum optics and quantum information processing. For several years,
researchers have aspired to extend such detection possibilities to larger scale
strongly correlated quantum systems, in order to record in-situ images of a
quantum fluid in which each underlying quantum particle is detected. Here we
report on fluorescence imaging of strongly interacting bosonic Mott insulators
in an optical lattice with single-atom and single-site resolution. From our
images, we fully reconstruct the atom distribution on the lattice and identify
individual excitations with high fidelity. A comparison of the radial density
and variance distributions with theory provides a precise in-situ temperature
and entropy measurement from single images. We observe Mott-insulating plateaus
with near zero entropy and clearly resolve the high entropy rings separating
them although their width is of the order of only a single lattice site.
Furthermore, we show how a Mott insulator melts for increasing temperatures due
to a proliferation of local defects. Our experiments open a new avenue for the
manipulation and analysis of strongly interacting quantum gases on a lattice,
as well as for quantum information processing with ultracold atoms. Using the
high spatial resolution, it is now possible to directly address individual
lattice sites. One could, e.g., introduce local perturbations or access regions
of high entropy, a crucial requirement for the implementation of novel cooling
schemes for atoms on a lattice
On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions
Within a hydrodynamical approach we investigate the sensitivity of single
inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three
different equations of state of nuclear matter. Two of the equations of state
are based on lattice QCD results and include a phase transition to a
quark-gluon plasma. The third equation of state has been extracted from the
microscopic transport code RQMD under the assumption of complete local
thermalization. All three equations of state provide reasonable fits to data
taken by the NA44 and NA49 Collaborations. The initial conditions before the
evolution of the fireballs and the space-time evolution pictures differ
dramatically for the three equations of state when the same freeze-out
temperature is used in all calculations. However, the softest of the equations
of state results in transverse mass spectra that are too steep in the central
rapidity region. We conclude that the transverse particle momenta are
determined by the effective softness of the equation of state during the
fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of
the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm
Thermometry with spin-dependent lattices
We propose a method for measuring the temperature of strongly correlated
phases of ultracold atom gases confined in spin-dependent optical lattices. In
this technique, a small number of "impurity" atoms--trapped in a state that
does not experience the lattice potential--are in thermal contact with atoms
bound to the lattice. The impurity serves as a thermometer for the system
because its temperature can be straightforwardly measured using time-of-flight
expansion velocity. This technique may be useful for resolving many open
questions regarding thermalization in these isolated systems. We discuss the
theory behind this method and demonstrate proof-of-principle experiments,
including the first realization of a 3D spin-dependent lattice in the strongly
correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating
rates updated to include dipole fluctuation terms; Section added on the
limitations of the proposed method. To appear in New Journal of Physic
AMI-LA Observations of the SuperCLASS Super-cluster
We present a deep survey of the SuperCLASS super-cluster - a region of sky
known to contain five Abell clusters at redshift - performed using
the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5GHz. Our
survey covers an area of approximately 0.9 square degrees. We achieve a nominal
sensitivity of Jy beam toward the field centre, finding 80
sources above a threshold. We derive the radio colour-colour
distribution for sources common to three surveys that cover the field and
identify three sources with strongly curved spectra - a high-frequency-peaked
source and two GHz-peaked-spectrum sources. The differential source count (i)
agrees well with previous deep radio source count, (ii) exhibits no evidence of
an emerging population of star-forming galaxies, down to a limit of 0.24mJy,
and (iii) disagrees with some models of the 15GHz source population.
However, our source count is in agreement with recent work that provides an
analytical correction to the source count from the SKADS Simulated Sky,
supporting the suggestion that this discrepancy is caused by an abundance of
flat-spectrum galaxy cores as-yet not included in source population models.Comment: 17 pages, 14 figures, 3 tables. Accepted for publication in MNRA
A Close Binary Star Resolved from Occultation by 87 Sylvia
The star BD+29 1748 was resolved to be a close binary from its occultation by
the asteroid 87 Sylvia on 2006 December 18 UT. Four telescopes were used to
observe this event at two sites separated by some 80 km apart. Two flux drops
were observed at one site, whereas only one flux drop was detected at the
other. From the long-term variation of Sylvia, we inferred the probable shape
of the shadow during the occultation, and this in turn constrains the binary
parameters: the two components of BD+29 1748 have a projected separation of
0.097" to 0.110" on the sky with a position angle 104 deg to 107 deg. The
asteroid was clearly resolved with a size scale ranging from 130 to 290 km, as
projected onto the occultation direction. No occultation was detected for
either of the two known moonlets of 87 Sylvia.Comment: 12 pages, 4 figures, 2 tables; submitted to the PAS
Three-loop \beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model
We analytically compute the dominant contributions to the \beta-functions for
the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as
well as the anomalous dimensions of the scalar, gluon and quark fields in the
unbroken phase of the Standard Model at three-loop level. These are mainly the
QCD and top-Yukawa corrections. The contributions from the Higgs
self-interaction which are negligible for the running of the top-Yukawa and the
strong coupling but important for the running of the Higgs self-coupling are
also evaluated.Comment: 22 pages, 7 figures. Few extra citations are added; the plots are
improved. Results in computer readable form can be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012
SuperCLASS - II. Photometric redshifts and characteristics of spatially resolved mu Jy radio sources
We present optical and near-infrared imaging covering a ∼1.53 deg2 region in the Super-Cluster Assisted Shear Survey (SuperCLASS) field, which aims to make the first robust weak lensing measurement at radio wavelengths. We derive photometric redshifts for ≈176 000 sources down to i′AB∼24 and present photometric redshifts for 1.4 GHz expanded Multi-Element Radio Linked Interferometer Network (e-MERLIN) and Karl G. Jansky Very Large Array (VLA) detected radio sources found in the central 0.26 deg2. We compile an initial catalogue of 149 radio sources brighter than S1.4 > 75 μJy and find their photometric redshifts span 0 7σ in the density map and we confirm the photometric redshifts are consistent with previously measured spectra from a few galaxies at the cluster centres
- …