1,643 research outputs found

    Comparison of the effects of sugammadex and neostigmine on hospital stayin robot-assisted laparoscopic prostatectomy: a retrospective study

    Get PDF
    Abstract Background Sugammadex reduces postoperative complications. We sought to determine whether it could reduce the length of hospital stay, post-anesthetic recovery time, unplanned readmission, and charges for patients who underwent robot-assisted laparoscopic prostatectomy (RALP) when compared to neostigmine. Methods This was a retrospective observational study of patients who underwent RALP between July 2012 and July 2017, in whom rocuronium was used as a neuromuscular blocker. The primary outcome was the length of hospital stay after surgery in patients who underwent reversal with sugammadex when compared to those who underwent reversal with neostigmine. The secondary outcomes were post-anesthetic recovery time, hospital charges, and unplanned readmission within 30 days after RALP. Results In total, 1430 patients were enrolled. Using a generalized linear model in a propensity score-matched cohort, sugammadex use was associated with a 6% decrease in the length of hospital stay (mean: sugammadex 7.7 days vs. neostigmine 8.2 days; odds ratio [OR] 0.94, 95% confidence interval [CI] [0.89, 0.98], P = 0.008) and an 8% decrease in post-anesthetic recovery time (mean: sugammadex 36.7 min vs. neostigmine 40.2 min; OR 0.92, 95% CI [0.90, 0.94], P < 0.001) as compared to neostigmine use; however, it did not reduce the 30-day unplanned readmission rate (P = 0.288). The anesthesia charges were higher in the sugammadex group than in the neostigmine group (P < 0.001); however, there were no significant differences between the groups in terms of postoperative net charges (P = 0.061) and total charges (P = 0.100). Conclusions Compared to the reversal of rocuronium effects with neostigmine, reversal with sugammadex after RALP was associated with a shorter hospital stay and post-anesthetic recovery time, and was not associated with 30-day unplanned readmission rates and net charges

    Optimal application of compressive palatal stents following mesiodens removal in pediatric patients:a Randomized Controlled Trial

    Get PDF
    There is no scientific evidence supporting the choice of a palatal stent in patients who underwent removal of an impacted supernumerary tooth. We aimed to investigate the effects of palatal stents in patients who underwent supernumerary tooth removal through a palatal approach and to suggest the optimal stent thickness and material. We recruited 144 patients who underwent extraction of a supernumerary tooth between the maxillary anterior teeth. Subjects were assigned to a control group (CG) or one of four compressive palatal stent groups (CPSGs) classified by the thickness and material of the thermoplastic acrylic stent used. Palatal gingival swelling and objective indices (healing, oral hygiene, gingival, and plaque) were evaluated before surgery and on postoperative days (PODs) 3, 7, and 14; pain/discomfort and the Child Oral Health Impact Profile (COHIP) were assessed as subjective indices of the effects of the stent. The CPSGs showed faster healing than did the CG on PODs 7 (P<0.001) and 14 (P=0.043); swelling was measured by 1.64±0.88 mm and 4.52±0.39 mm, respectively. Although swelling was least in the 4-mm hard group (0.92±0.33 mm), the difference compared with that in the 2-mm hard group (1.01±0.18 mm) was not significant (P=0.077). The CPSGs showed better COHIP (P<0.001-0.036) and pain scores (P<0.001) than did the CG on PODs 1-3. Compressive palatal stents reduce discomfort by decreasing pain and alleviating swelling. Although a stent is effective regardless of its thickness and material, 2-mm hard stents maximized such positive effects with minimal discomfort

    Overview of the population genetics and connectivity of sea turtles in the East Asia Region and their conservation implications

    Get PDF
    Understanding the current status and recent development of the population genetics and connectivity of sea turtles is crucial for effective conservation management of the species. Five sea turtle species, green turtle (Chelonia mydas), loggerhead turtle (Caretta caretta), hawksbill turtle (Eretmochelys imbricata), olive ridley turtle (Lepidochelys olivacea) and leatherback turtle (Dermochelys coriacea), are recorded in the East Asia Region situated in the western side of the North Pacific Ocean. We compiled information from 35 published genetic studies on the five sea turtle species, with a focus on green turtle and loggerhead turtle, which are the most studied species (in 30 studies) in view of their commonness and occurrence of nesting populations. We provided an overview of the key methods and findings of these previous studies, addressing two main objectives on genetic structure of the rookeries and their differences compared to other populations, and connectivity of the rookeries and foraging aggregations. By identifying information gaps and conservation needs, we discussed future developments for sea turtle genetic studies and conservation implications in the region

    CO ameliorates cellular senescence and aging by modulating the miR-34a/Sirt1 pathway

    Get PDF
    Oxidative stress is recognised as a key factor that can lead to cellular senescence and aging. Carbon monoxide (CO) is produced by haemoxygenase-1 (HO-1), which exerts cytoprotective effects in aging-related diseases, whereas the effect of CO on cellular senescence and aging has not been elucidated. In the current study, we clearly demonstrated that CO delays the process of cellular senescence and aging through regulation of miR-34a and Sirt1 expression. CO reduced H2O2-induced premature senescence in human diploid fibroblast WI-38 cells measured with SA-beta-Gal-staining. Furthermore, CO significantly decreased the expression of senescence-associated secretory phenotype (SASP), including TNF-alpha IL-6, and PAI-1 and increased the transcriptional levels of antioxidant genes, such as HO-1 and NQO1. Moreover, CO apparently enhanced the expression of Sirt1 through down-regulation of miR-34a. Next, to determine whether Sirt1 mediates the inhibitory effect of CO on cellular senescence, we pre-treated WI-38 cells with the Sirt1 inhibitor Ex527 and a miR-34a mimic followed by the administration of H2O2 and evaluated the expression of SASP and antioxidant genes as well as ROS production. According to our results, Sirt1 is crucial for the antiaging and antioxidant effects of CO. Finally, CO prolonged the lifespan of Caenorhabditis elegans and delayed high-fat diet-induced liver aging. Taken together, these findings demonstrate that CO reduces cellular senescence and liver aging through the regulation of miR-34a and Sirt1.

    GSK-3β inhibition by curcumin mitigates amyloidogenesis via TFEB activation and anti-oxidative activity in human neuroblastoma cells

    Get PDF
    © 2020 Informa UK Limited, trading as Taylor & Francis Group.The translocation of transcription factor EB (TFEB) to the nucleus plays a pivotal role in the regulation of basic cellular processes, such as lysosome biogenesis and autophagy. Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, which is important in maintaining cellular homeostasis during environmental stress. Furthermore, oxidative stress is a critical cause for the progression of neurodegenerative diseases. Curcumin has anti-oxidative and anti-inflammatory activities, and is expected to have potential therapeutic effects in various diseases. In this study, we demonstrated that curcumin regulated TFEB export signalling via inhibition of glycogen synthase kinase-3β (GSK-3β); GSK-3β was inactivated by curcumin, leading to reduced phosphorylation of TFEB. We further showed that H2O2-induced oxidative stress was reduced by curcumin via the Nrf2/HO-1 pathway in human neuroblastoma cells. In addition, we showed that curcumin induced the degradation of amyloidogenic proteins, including amyloid-β precursor protein and α-synuclein, through the TFEB-autophagy/lysosomal pathway. In conclusion, curcumin regulates autophagy by controlling TFEB through the inhibition of GSK-3β, and increases antioxidant gene expression in human neuroblastoma cells. These results contribute to the development of novel cellular therapies for neurodegenerative diseases.

    Pulmonary Nodular Lymphoid Hyperplasia Associated with Sjögren's Syndrome

    Get PDF
    Pulmonary nodular lymphoid hyperplasia (NLH) is a term first suggested by Kradin and Mark to describe one or more pulmonary nodules or localized lung infiltrates consisting of reactive lymphoid proliferation. To date, there have been only a few cases of pulmonary NLH reported associated with autoimmune disorders. There is no case of NLH associated with Sjögren's syndrome from Korea in the medical literature. A 56-year-old woman was referred to our hospital with cough productive of sputum and chest tightness. The Computed tomography scans of the chest revealed multiple and well-defined peribronchiolar nodular opacities. A video assisted thoracoscopic surgery (VATS) biopsy was performed and the nodular opacity in the lung parenchyma was pathologically confirmed as NLH. Through meticulous review of patient's record, we found that she had been suffering from dry eye and dry mouth. The symptoms suggested Sjögren's syndrome, which was confirmed by specific laboratory tests including the Schirmer test, anti-nuclear antibody and anti-Ro/La antibody. The patient is followed regularly and has no further progression of symptoms

    In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni

    Get PDF
    Several CRISPR-Cas9 orthologues have been used for genome editing. Here, we present the smallest Cas9 orthologue characterized to date, derived from Campylobacter jejuni (CjCas9), for efficient genome editing in vivo. After determining protospacer-adjacent motif (PAM) sequences and optimizing single-guide RNA (sgRNA) length, we package the CjCas9 gene, its sgRNA sequence, and a marker gene in an all-in-one adeno-associated virus (AAV) vector and produce the resulting virus at a high titer. CjCas9 is highly specific, cleaving only a limited number of sites in the human or mouse genome. CjCas9, delivered via AAV, induces targeted mutations at high frequencies in mouse muscle cells or retinal pigment epithelium (RPE) cells. Furthermore, CjCas9 targeted to the Vegfa or Hif1a gene in RPE cells reduces the size of laser-induced choroidal neovascularization, suggesting that in vivo genome editing with CjCas9 is a new option for the treatment of age-related macular degeneration.

    Thermal spin injection and accumulation in CoFe/MgO/n-type Ge contacts

    Get PDF
    Understanding the interplay between spin and heat is a fundamental and intriguing subject. Here we report thermal spin injection and accumulation in CoFe/MgO/n-type Ge contacts with an asymmetry of tunnel spin polarization. Using local heating of electrodes by laser beam or electrical current, the thermally-induced spin accumulation is observed for both polarities of the temperature gradient across the tunnel contact. We observe that the magnitude of thermally injected spin signal scales linearly with the power of local heating of electrodes, and its sign is reversed as we invert the temperature gradient. A large Hanle magnetothermopower (HMTP) of about 7.0% and the Seebeck spin tunneling coefficient of larger than 0.74 meV K-1 are obtained at room temperature.1
    corecore