7,820 research outputs found
Modulated voltage metastable ionization detector
The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder
Non-equilibrium mechanics and dynamics of motor activated gels
The mechanics of cells is strongly affected by molecular motors that generate
forces in the cellular cytoskeleton. We develop a model for cytoskeletal
networks driven out of equilibrium by molecular motors exerting transient
contractile stresses. Using this model we show how motor activity can
dramatically increase the network's bulk elastic moduli. We also show how motor
binding kinetics naturally leads to enhanced low-frequency stress fluctuations
that result in non-equilibrium diffusive motion within an elastic network, as
seen in recent \emph{in vitro} and \emph{in vivo} experiments.Comment: 21 pages, 8 figure
Nematic and Polar order in Active Filament Solutions
Using a microscopic model of interacting polar biofilaments and motor
proteins, we characterize the phase diagram of both homogeneous and
inhomogeneous states in terms of experimental parameters. The polarity of motor
clusters is key in determining the organization of the filaments in homogeneous
isotropic, polarized and nematic states, while motor-induced bundling yields
spatially inhomogeneous structures.Comment: 4 pages. 3 figure
Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012
Atmospheric concentrations of dichloromethane, CH2Cl2, a regulated toxic air pollutant and minor contributor to stratospheric ozone depletion, were reported to have peaked around 1990 and to be declining in the early part of the 21st century. Recent observations suggest this trend has reversed and that CH2Cl2 is once again increasing in the atmosphere. Despite the importance of ongoing monitoring and reporting of atmospheric CH2Cl2, no time series has been discussed in detail since 2006. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) has analysed the halocarbon content of whole-air samples collected at altitudes of between ~10–12 km via a custom-built container installed on commercial passenger aircraft since 1998, providing a long-term record of CH2Cl2 observations. In this paper we present this unique CH2Cl2 time series, discussing key flight routes which have been used at various times over the past 15 years. Between 1998 and 2012 increases were seen in all northern hemispheric regions and at different altitudes, ranging from ~7–10 ppt in background air to ~13–15 ppt in regions with stronger emissions (equating to a 38–69% increase). Of particular interest is the rising importance of India as a source of atmospheric CH2Cl2: based on CARIBIC data we provide regional emission estimates for the Indian subcontinent and show that regional emissions have increased from 3–14 Gg yr^-1 (1998–2000) to 16–25 Gg yr^-1 (2008). Potential causes of the increasing atmospheric burden of CH2Cl2 are discussed. One possible source is the increased use of CH2Cl2 as a feedstock for the production of HFC-32, a chemical used predominantly as a replacement for ozone-depleting substances in a variety of applications including air conditioners and refrigeration
Rheology of Active Filament Solutions
We study the viscoelasticity of an active solution of polar biofilaments and
motor proteins. Using a molecular model, we derive the constitutive equations
for the stress tensor in the isotropic phase and in phases with liquid
crystalline order. The stress relaxation in the various phases is discussed.
Contractile activity is responsible for a spectacular difference in the
viscoelastic properties on opposite sides of the order-disorder transition.Comment: 4 pages, 1 figur
Non-equilibrium microtubule fluctuations in a model cytoskeleton
Biological activity gives rise to non-equilibrium fluctuations in the
cytoplasm of cells; however, there are few methods to directly measure these
fluctuations. Using a reconstituted actin cytoskeleton, we show that the
bending dynamics of embedded microtubules can be used to probe local stress
fluctuations. We add myosin motors that drive the network out of equilibrium,
resulting in an increased amplitude and modified time-dependence of microtubule
bending fluctuations. We show that this behavior results from step-like forces
on the order of 10 pN driven by collective motor dynamics
Bridging the microscopic and the hydrodynamic in active filament solutions
Hydrodynamic equations for an isotropic solution of active polar filaments
are derived from a microscopic mean-field model of the forces exchanged between
motors and filaments. We find that a spatial dependence of the motor stepping
rate along the filament is essential to drive bundle formation. A number of
differences arise as compared to hydrodynamics derived (earlier) from a
mesoscopic model where relative filament velocities were obtained on the basis
of symmetry considerations. Due to the anisotropy of filament diffusion, motors
are capable of generating net filament motion relative to the solvent. The
effect of this new term on the stability of the homogeneous state is
investigated.Comment: 7 pages, 2 figures, submitted to Europhys. Let
Structure of a model TiO2 photocatalytic interface
The interaction of water with TiO2 is crucial to many of its practical
applications, including photocatalytic water splitting. Following the first
demonstration of this phenomenon 40 years ago there have been numerous studies
of the rutile single-crystal TiO2(110) interface with water. This has provided
an atomic-level understanding of the water-TiO2 interaction. However, nearly
all of the previous studies of water/TiO2 interfaces involve water in the
vapour phase. Here, we explore the interfacial structure between liquid water
and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning
tunnelling microscopy and surface X-ray diffraction are used to determine the
structure, which is comprised of an ordered array of hydroxyl molecules with
molecular water in the second layer. Static and dynamic density functional
theory calculations suggest that a possible mechanism for formation of the
hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially
defected surface. The quantitative structural properties derived here provide a
basis with which to explore the atomistic properties and hence mechanisms
involved in TiO2 photocatalysis
Testing Lorentz and CPT symmetry with hydrogen masers
We present details from a recent test of Lorentz and CPT symmetry using
hydrogen masers. We have placed a new limit on Lorentz and CPT violation of the
proton in terms of a recent standard model extension by placing a bound on
sidereal variation of the F = 1 Zeeman frequency in hydrogen. Here, the
theoretical standard model extension is reviewed. The operating principles of
the maser and the double resonance technique used to measure the Zeeman
frequency are discussed. The characterization of systematic effects is
described, and the method of data analysis is presented. We compare our result
to other recent experiments, and discuss potential steps to improve our
measurement.Comment: 26 pages, 16 figure
- …