2,611 research outputs found
Preparation of Dicke States in an Ion Chain
We have investigated theoretically and experimentally a method for preparing
Dicke states in trapped atomic ions. We consider a linear chain of ion
qubits that is prepared in a particular Fock state of motion, . The
phonons are removed by applying a laser pulse globally to the qubits, and
converting the motional excitation to flipped spins. The global nature of
this pulse ensures that the flipped spins are shared by all the target ions
in a state that is a close approximation to the Dicke state \D{N}{m}. We
calculate numerically the fidelity limits of the protocol and find small
deviations from the ideal state for and . We have demonstrated
the basic features of this protocol by preparing the state \D{2}{1} in two
Mg target ions trapped simultaneously with an Al
ancillary ion.Comment: 5 pages, 2 figure
Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons
During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival
Frequency Comparison of Two High-Accuracy Al+ Optical Clocks
We have constructed an optical clock with a fractional frequency inaccuracy
of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously
trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its
quantum state. The frequency of the 1S0->3P0 clock transition is compared to
that of a previously constructed Al+ optical clock with a statistical
measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability
of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17,
consistent with the accuracy limit of the older clock.Comment: 4 pages, 2 tables, 3 figure
Coastal oceanography and sedimentology in New Zealand, 1967-91.
This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years
Minactivin expression in human monocyte and macrophage populations
Adherent monolayer cultures of human blood monocytes, peritoneal macrophages, bone marrow macrophages, and colonic mucosa macrophages were examined for their ability to produce and secrete minactivin, a specific inactivator of urokinase-type plasminogen activator. All except colonic mucosa macrophages produced and secreted appreciable amounts of minactivin, but only blood monocytes were stimulated by muramyl dipeptide (adjuvant peptide) to increase production. The minactivin from each of these populations could be shown to preferentially inhibit urokinase-type plasminogen activator and not trypsin, plasmin, or 'tissue'-type plasminogen activator (HPA66). A plasminogen-activating enzyme present in monocyte cultures appeared unaffected by the presence of minactivin and could be shown to be regulated independently by dexamethasone
The Structure of Barium in the hcp Phase Under High Pressure
Recent experimental results on two hcp phases of barium under high pressure
show interesting variation of the lattice parameters. They are here interpreted
in terms of electronic structure calculation by using the LMTO method and
generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II
the dramatic drop in c/a is an instability analogous to that in the group II
metals but with the transfer of s to d electrons playing a crucial role in Ba.
Meanwhile in phase V, the instability decrease a lot due to the core repulsion
at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx,
71.15LaComment: 29 pages, 8 figure
- …