8 research outputs found
Evaluation of Canine Pancreas-Specific Lipase Activity, Lipase Activity, and Trypsin-Like Immunoreactivity in an Experimental Model of Acute Kidney Injury in Dogs.
BackgroundDiagnosis of pancreatitis in dogs is complicated by extrapancreatic disorders that can alter the results of laboratory tests. Extrapancreatic disorders can also affect the diagnosis of exocrine pancreatic insufficiency (EPI). The effects of acute kidney injury (AKI) on pancreas-specific lipase activity (Spec cPL(®) Test), serum lipase activity and trypsin-like immunoreactivity (TLI) in dogs have not been evaluated.Hypothesis/objectivesSerum Spec cPL, lipase activity, and TLI concentrations will increase secondary to decreased kidney function.AnimalsFive purpose-bred dogs.MethodsExperimental prospective study. Gentamicin was used to induce AKI in 5 purpose-bred dogs. Serum samples were collected for measurement of creatinine, Spec cPL, lipase activity and TLI over 60 days, during both induction of, and recovery from, AKI.ResultsAll dogs developed and recovered from AKI. Six of 52 (12%) serum Spec cPL concentrations were increased (2 in the equivocal zone and 4 consistent with pancreatitis) in 2 of 5 (40%) dogs. Two of 51 (4%) serum lipase activity values were increased in 2 of 5 dogs. Serum TLI was increased above the reference range in 17 of 50 (34%) samples in 3 of 5 dogs. For all biomarkers, there was no consistent correlation with increases in serum creatinine concentration.Conclusions and clinical importanceDecreased renal excretion during experimental AKI did not cause consistent and correlated increases in serum Spec cPL, lipase activity, or TLI in this cohort of dogs
An overview of tissue engineering approaches for management of spinal cord injuries
Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed
Recommended from our members
Evaluation of Canine Pancreas-Specific Lipase Activity, Lipase Activity, and Trypsin-Like Immunoreactivity in an Experimental Model of Acute Kidney Injury in Dogs.
BackgroundDiagnosis of pancreatitis in dogs is complicated by extrapancreatic disorders that can alter the results of laboratory tests. Extrapancreatic disorders can also affect the diagnosis of exocrine pancreatic insufficiency (EPI). The effects of acute kidney injury (AKI) on pancreas-specific lipase activity (Spec cPL(®) Test), serum lipase activity and trypsin-like immunoreactivity (TLI) in dogs have not been evaluated.Hypothesis/objectivesSerum Spec cPL, lipase activity, and TLI concentrations will increase secondary to decreased kidney function.AnimalsFive purpose-bred dogs.MethodsExperimental prospective study. Gentamicin was used to induce AKI in 5 purpose-bred dogs. Serum samples were collected for measurement of creatinine, Spec cPL, lipase activity and TLI over 60 days, during both induction of, and recovery from, AKI.ResultsAll dogs developed and recovered from AKI. Six of 52 (12%) serum Spec cPL concentrations were increased (2 in the equivocal zone and 4 consistent with pancreatitis) in 2 of 5 (40%) dogs. Two of 51 (4%) serum lipase activity values were increased in 2 of 5 dogs. Serum TLI was increased above the reference range in 17 of 50 (34%) samples in 3 of 5 dogs. For all biomarkers, there was no consistent correlation with increases in serum creatinine concentration.Conclusions and clinical importanceDecreased renal excretion during experimental AKI did not cause consistent and correlated increases in serum Spec cPL, lipase activity, or TLI in this cohort of dogs
Disseminated Rasamsonia argillacea species complex infections in 8 dogs
BACKGROUND: Clinical features, treatment, and outcome of opportunistic infections with Rasamsonia spp., a nonpigmented filamentous mold, are not well documented in dogs. OBJECTIVES: Describe clinical, radiographic, pathologic features, and outcome of dogs with disseminated Rasamsonia species complex infections. ANIMALS: Eight client-owned dogs. METHODS: Retrospective case series. Medical records were reviewed to describe signalment, history, clinicopathologic and imaging findings, microbiologic and immunologic results, cyto- and histopathologic diagnoses, treatment, and outcome. RESULTS: Presenting complaints were nonspecific with anorexia (n = 5) and back pain (n = 4) most common. Five dogs were German Shepherd dogs. Six dogs had multifocal discospondylitis and 2 had pleural effusion. Six dogs had Rasamsonia piperina and 2 had Rasamsonia argillacea infections with isolates identified using DNA sequencing. Rasamsonia spp. were isolated by urine culture in 5 of 7 dogs. Five of 6 dogs had positive serum Aspergillus galactomannan antigen enzyme immunoassay (EIA) results. Median survival time was 82 days, and 317 days for dogs that survived to discharge. Four died during initial hospitalization (median survival, 6 days). All isolates had low minimum effective concentrations (MECs) to echinocandins with variable minimum inhibitory concentrations (MICs) for azole antifungal drugs. CONCLUSIONS AND CLINICAL IMPORTANCE: Rasamsonia spp. infections in dogs are associated with multisystemic disease involving the vertebral column, central nervous system, kidneys, spleen, lymph nodes, lungs, and heart. The infection shares clinical features with other systemic mold infections and can be misidentified when using phenotypical microbiologic methods. Molecular techniques are required to identify the organism and guide appropriate antifungal treatment