62 research outputs found

    How far is brain-inspired artificial intelligence away from brain?

    Get PDF
    Fueled by the development of neuroscience and artificial intelligence (AI), recent advances in the brain-inspired AI have manifested a tipping-point in the collaboration of the two fields. AI began with the inspiration of neuroscience, but has evolved to achieve a remarkable performance with little dependence upon neuroscience. However, in a recent collaboration, research into neurobiological explainability of AI models found that these highly accurate models may resemble the neurobiological representation of the same computational processes in the brain, although these models have been developed in the absence of such neuroscientific references. In this perspective, we review the cooperation and separation between neuroscience and AI, and emphasize on the current advance, that is, a new cooperation, the neurobiological explainability of AI. Under the intertwined development of the two fields, we propose a practical framework to evaluate the brain-likeness of AI models, paving the way for their further improvements

    The effects of psychiatric disorders on the risk of chronic heart failure: a univariable and multivariable Mendelian randomization study

    Get PDF
    BackgroundSubstantial evidence suggests an association between psychiatric disorders and chronic heart failure. However, further investigation is needed to confirm the causal relationship between these psychiatric disorders and chronic heart failure. To address this, we evaluated the potential effects of five psychiatric disorders on chronic heart failure using two-sample Mendelian Randomization (MR).MethodsWe selected single nucleotide polymorphisms (SNPs) associated with chronic heart failure and five psychiatric disorders (Attention-Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Major Depression, Bipolar Disorder and Schizophrenia (SCZ)). Univariable (UVMR) and multivariable two-sample Mendelian Randomization (MVMR) were employed to assess causality between these conditions. Ever smoked and alcohol consumption were controlled for mediating effects in the multivariable MR. The inverse variance weighting (IVW) and Wald ratio estimator methods served as the primary analytical methods for estimating potential causal effects. MR-Egger and weighted median analyses were also conducted to validate the results. Sensitivity analyses included the funnel plot, leave-one-out, and MR-Egger intercept tests. Additionally, potential mediators were investigated through risk factor analyses.ResultsGenetically predicted heart failure was significantly associated with ADHD (odds ratio (OR), 1.12; 95% CI, 1.04–1.20; p = 0.001), ASD (OR, 1.29; 95% CI, 1.07–1.56; p = 0.008), bipolar disorder (OR, 0.89; 95% CI, 0.83–0.96; p = 0.001), major depression (OR, 1.15; 95% CI, 1.03–1.29; p = 0.015), SCZ (OR, 1.04; 95% CI, 1.00–1.07; p = 0.024). Several risk factors for heart failure are implicated in the above cause-and-effect relationship, including ever smoked and alcohol consumption.ConclusionOur study demonstrated ADHD, ASD, SCZ and major depression may have a causal relationship with an increased risk of heart failure. In contrast, bipolar disorder was associated with a reduced risk of heart failure, which could potentially be mediated by ever smoked and alcohol consumption. Therefore, prevention strategies for heart failure should also incorporate mental health considerations, and vice versa

    Effects of forest spatial types, element compositions and forest stands on restorative potential and aesthetic preference

    Get PDF
    IntroductionAs global urbanization intensifies, the physical and mental stressors of modern life have led to the growing prevalence of suboptimal health conditions. Spending time in a forest benefits human health and well-being. In this context, based on the forest spatial types (forest interior and forest edge spaces), landscape elements (architecture, water and roads) and forest stands (coniferous, broadleaf and bamboo forests), this study investigated the effects of different forest spatial landscape characteristics on the restorative potential for college students, aesthetic preference and eye movement behavior (total fixation duration and fixation count).MethodsIn this study, a total of 60 subjects were exposed to 42 photographs depicting typical forest landscapes acquired through field studies. The Short-version Revised Restoration and Preference Scale and eye-tracking technology, were employed to study the recovery efficiency and visual attraction of forest spatial of different forest spatial types, element compositions and forest stands.Results(1) The restorative potential and aesthetic preference score of forest edge spaces were significantly higher than those of forest interior spaces. (2) The restorative potential of bamboo forests was significantly higher than those of coniferous and broadleaf forests. (3) In terms of forest interior space, the restorative potential of “forest + 1 element” composition and “forest + 2 elements” composition was significantly higher than that of pure forest, and the restorative potential of interior space of bamboo forest was significantly higher than those of coniferous and broadleaf forests. (4) In terms of forest edge space, the restorative potential of “forest + 2 elements” composition was significantly higher than that of pure forest, and the restorative potential of pure forests was significantly higher than that of the “forest + 1 element” composition. (5) The restorative potential of forest spatial landscape characteristics positively correlated with aesthetic preference and negatively correlated with total fixation duration and fixation count. These results can provide a reference for future forest landscape research, construction and management

    Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    No full text
    In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger

    Existence of Nontrivial Solutions for Perturbed p

    No full text
    We consider a perturbed p-Laplacian equation with critical nonlinearity in ℝN. By using variational method, we show that it has at least one positive solution under the proper conditions

    Organ regeneration: integration application of cell encapsulation and 3D bioprinting

    No full text
    3D bioprinting has shown great promise in the field of tissue engineering, which offers a vital and significant platform for organ regeneration. Therefore, an increasing focus on 3D bioprinting, coupled with a growing knowledge of cell–cell interaction and cell encapsulation, has driven researchers to discover the preferable biomaterials that enable the greatest possible to reconstruct artificial organs with the different cells and hydrogel. One important challenge is to adapt materials selected to improve the cell survival rate. In this paper, we firstly summarise the fundamentals and the latest application of biomaterials that have significant characteristics such as porous, biodegradability, biological compatibility, and adaptability, and further describe formation mechanisms of droplet under the different cell encapsulation technologies, and finally highlight integration application of cell encapsulation and 3D bioprinting

    A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling

    No full text
    International audiencePredictive maintenance technologies can be employed for failure prediction and system health management. Nevertheless, the additional cost involved in establishing the predictive maintenance system can be an obstacle to its widespread application. The decision on the predictive maintenance technology adoption can be made through the computation of the return on investment. To investigate the mechanisms of dynamic game between stakeholders involved in predictive maintenance, we establish the SD-EGT model from the perspective of systems engineering. This paper aims to propose an integrated method for the economic evaluation of predictive maintenance technologies by considering the incremental costs and benefits associated with its deployment. As an exemplary case, we take the Lithium-ion batteries whose failures have led to unexpected safety accidents. Firstly, we construct a quantitative relationship model between the failure modes and the predictive benefits of Lithium-ion battery systems to quantify the incremental benefits. Then, we establish a cost-benefit analysis (CBA) model by using system dynamics (SD) to make decisions about cost-effectiveness. Secondly, to optimize the cost investment strategy for the predictive maintenance technology, we develop an enterprise-government evolutionary game model, considering the information asymmetry between players. Eventually, we conduct a sensitivity analysis of the static subsidy strategy. The proposed methodology is serviceable to optimize the decision-making of predictive maintenance technology investment, which is a difficult yet very important task in industrial practice

    Analysis method of flight crew human factors in system safety assessment

    No full text
    With the improvement of high complexity and automation level of the aircraft systems,pilots are often ill-prepared to cope with an actual emergency or failure,and their corrective actions may be erroneous,delayed or incomplete. Therefore,there is an urgent need to consider flight crew human factors in system safety assessment. By analyzing the requirements of CCAR25.1309(b)and(c)and failure processing process of flight crew,based on the failure conditions in functional hazard assessment,the methods of requirements capture and analysis of flight crew human factors is proposed. By applying these methods in the aircraft development,the top down design for safety which from failure condition to alert and procedures is achieved,and a complete chain of compliance evidence for human factor of safety is established. The results show that the proposed method can effectively demonstrate airworthiness compliance with human factors of CCAR25.1309 (b)and(c)
    corecore