31 research outputs found

    Preparation and characterization of polypropylene/silica composite particle with interpenetrating network via hot emulsion sol–gel approach

    Get PDF
    AbstractA novel interpenetrating structural ultrafine polypropylene-silica nanocomposite particles were synthesized by a modified sol–gel approach in the presence of the melt polypropylene emulsion. A series of samples with different polypropylene content was prepared to investigate the unique characteristics of this original nanocomposite. The thermal gravimetric analysis and differential scanning calorimetry results showed that the nanocomposites had the interpenetrating structure and good thermal stability, and the crystallization behavior of polypropylene was confined by the silica matrix. The interpenetrating structure of nanocomposites was also suggested by the nitrogen adsorption–desorption measurement results. The scanning electronic microscope and transmission electron microscopy images indicated that the nanocomposites had irregular particle morphology. The nanoparticle tracking analysis results show that the mean size of the nanocomposites was around 160nm. According to the results obtained from different measurements, a reasonable formation mechanism was proposed

    Impact of Coal Mining on the Moisture Movement in a Vadose Zone in Open-Pit Mine Areas

    No full text
    Long-term dewatering of groundwater is a necessary operation for mining safety in open-pit coal mines, as extensive dewatering might cause ecological problems due to dramatic changes in moisture movement in the soil, especially in ecologically fragile areas. In order to evaluate the impact of the coal mining operation on moisture movement in the vadose zone and vegetation, this paper presents a quantitative methodology and takes the Baorixile open-pit coal mine as a study example. A long-term in situ experiment (from 2004 to 2018), laboratory analysis, and numerical modelling were conducted to analyze the mechanisms and relationship among the dropping groundwater level, the vadose-zone moisture, and the ecological responses in the grassland area. The experiment data and modelling results suggest that groundwater level dropping during open-pit mining operation has limited influence on the vadose zone, exhibiting a variation of capillary water zone within a depth of 3 m while the vadose zone and soil water zone were at least 16 m deep. The critical evaporation depth of ground water is 8 m. The long-term influence radius of groundwater dewatering is about 2.72 km during the Baorixile mining operation, and the groundwater level change mainly influences the lower part of the intermediate vadose zone and the capillary water zone below 16 m, with little influence on the moisture contents in the soil water zone where the roots of shallow vegetation grow. The results from this study provide useful insight for sustainable development of coal mining in ecologically fragile areas

    Enhancement in Mechanical and Shape Memory Properties for Liquid Crystalline Polyurethane Strengthened by Graphene Oxide

    No full text
    Conventional shape memory polymers suffer the drawbacks of low thermal stability, low strength, and low shape recovery speed. In this study, main-chain liquid crystalline polyurethane (LCPU) that contains polar groups was synthesized. Graphene oxide (GO)/LCPU composite was fabricated using the solution casting method. The tensile strength of GO/LCPU was 1.78 times that of neat LCPU. In addition, shape recovery speed was extensively improved. The average recovery rate of sample with 20 wt % GO loading was 9.2°/s, much faster than that of LCPU of 2.6°/s. The enhancement in mechanical property and shape memory behavior could be attributed to the structure of LCPU and GO, which enhanced the interfacial interactions between GO and LCPU

    Multiple-Stimuli Responsive Bioelectrocatalysis Based on Reduced Graphene Oxide/Poly(<i>N</i>‑isopropylacrylamide) Composite Films and Its Application in the Fabrication of Logic Gates

    No full text
    In the present work, reduced graphene oxide (rGO)/poly­(<i>N</i>-isopropylacrylamide) (PNIPAA) composite films were electrodeposited onto the surface of Au electrodes in a fast and one-step manner from an aqueous mixture of a graphene oxide (GO) dispersion and <i>N</i>-isopropylacrylamide (NIPAA) monomer solutions. Reflection–absorption infrared (IR) and Raman spectroscopies were employed to characterize the successful construction of the rGO/PNIPAA composite films. The rGO/PNIPAA composite films exhibited reversible potential-, pH-, temperature-, and sulfate-sensitive cyclic voltammetric (CV) on–off behavior to the electroactive probe ferrocenedicarboxylic acid (Fc­(COOH)<sub>2</sub>). For instance, after the composite films were treated at −0.7 V for 7 min, the CV responses of Fc­(COOH)<sub>2</sub> at the rGO/PNIPAA electrodes were quite large at pH 8.0, exhibiting the on state. However, after the films were treated at 0 V for 30 min, the CV peak currents became much smaller, demonstrating the off state. The mechanism of the multiple-stimuli switchable behaviors for the system was investigated not only by electrochemical methods but also by scanning electron microscopy and X-ray photoelectron spectroscopy. The potential-responsive behavior for this system was mainly attributed to the transformation between rGO and GO in the films at different potentials. The film system was further used to realize multiple-stimuli responsive bioelectrocatalysis of glucose catalyzed by the enzyme of glucose oxidase and mediated by the electroactive probe of Fc­(COOH)<sub>2</sub> in solution. On the basis of this, a four-input enabled OR (EnOR) logic gate network was established

    New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    No full text
    Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ) redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode

    Nanohybrid nafion membranes for fuel cells

    No full text
    We review strategies to produce Nafion nanohybrid membranes with improved properties based on functionalized silica and clay nanoparticles. Two distinct approaches are presented here: a) the use of H+-exchanged clay platelets to act as physical barriers to methanol diffusion, while having high levels of ionic mobility and b) the application of depletion forces to construct a compact microstructure based on the assembly of clay platelets. Both classes of hybrids exhibit significantly improved selectivity (ratio of ionic conductivity over methanol permeability) and dramatically enhanced thermomechanical properties. Those characteristics are highly desirable for fuel cell applications and strongly depend on the morphological features of the membranes

    Comprehensive Investigation of the Differences of the Roots of Wild and Cultivated Mirabilis himalaica (Edgew) Heim Based on Macroscopic and Microscopic Identification Using HPLC Fingerprint

    No full text
    Mirabilishimalaica (Edgew) Heim (MH) is an important Tibetan medicine with demonstrated medicinal efficacy and promising developmental value. A previous study of MH was limited to vague morphological and microscopic descriptions, restricting its clinical application and further development as a medicine. The goal of this study was to comprehensively characterize wild and cultivated products of MH using macroscopic and microscopic identification using HPLC fingerprint. The results revealed that the cultivated and wild MH exhibited differences in macroscopic and microscopic characteristics and chemical components. This analysis can facilitate the establishment of a more comprehensive quality evaluation method for MH. These results provide the basis for clinical applications and the improvement of quality standards of MH as a step towards modernization of Tibetan medicine

    High Rate Performance Nanocomposite Electrode of Mesoporous Manganese Dioxide/Silver Nanowires in KI Electrolytes

    No full text
    In recent years, manganese dioxide has become a research hotspot as an electrode material because of its low price. However, it has also become an obstacle to industrialization due to its low ratio of capacitance and the low rate performance which is caused by the poor electrical conductivity. In this study, a KI solution with electrochemical activity was innovatively applied to the electrolyte, and we systematically investigated the rate performance of the mesoporous manganese dioxide and the composite electrode with silver nanowires in supercapacitors. The results showed that when mesoporous manganese dioxide and mesoporous manganese dioxide/silver nanowires composite were used as electrodes, the strength of the current was amplified five times (from 0.1 to 0.5 A/g), the remaining rates of specific capacitance were 95% (from 205.5 down to 197.1 F/g) and 92% (from 208.1 down to 191.7 F/g) in the KI electrolyte, and the rate performance was much higher than which in an Na2SO4 electrolyte with a remaining rate of 25% (from 200.3 down to 49.1 F/g) and 60% (from 187.2 down to 113.1 F/g). The morphology and detail structure were investigated by Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry and Nitrogen adsorption-desorption isotherms. The electrochemical performance was assessed by cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy

    Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    No full text
    The cooperative effects between the PANI (polyaniline)/nano-NiO (nano nickel oxide) composite electrode material and redox electrolytes (potassium iodide, KI) for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD) as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution), superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system) and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1). All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure
    corecore