48 research outputs found
Global data on earthworm abundance, biomass, diversity and corresponding environmental properties
14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change
First measurement of Ωc0 production in pp collisions at s=13 TeV
The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| <0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions
Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions
Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC
ALICE luminosity determination for PbPb collisions at TeV
International audienceLuminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb–Pb collisions at a centre-of-mass energy per nucleon pair of √s = 5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan.This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb–Pb collisions at √s = 5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using the Glauber model
Light (anti)nuclei production in Pb-Pb collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>5.02</mn><mo> </mo><mi>TeV</mi></mrow></math>
International audienceThe measurement of the production of deuterons, tritons and He3 and their antiparticles in Pb-Pb collisions at sNN=5.02TeV is presented in this article. The measurements are carried out at midrapidity (|y|< 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities
First measurement of <math><msubsup><mi mathvariant="normal">Λ</mi><mrow><mi>c</mi></mrow><mo>+</mo></msubsup></math> production down to <math><mrow><msub><mi>p</mi><mi>T</mi></msub><mo>=</mo><mn>0</mn></mrow></math> in <math><mrow><mi>p</mi><mi>p</mi></mrow></math> and <math><mi>p</mi></math>-Pb collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>5.02</mn></mrow></math> TeV
International audienceThe production of prompt Λc+ baryons has been measured at midrapidity in the transverse momentum interval 0<pT<1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision sNN=5.02TeV. The measurement was performed in the decay channel Λc+→pKS0 by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT-integrated Λc+ production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT-integrated nuclear modification factors RpPb and RAA of Λc+ baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Λc+/D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ) modification of the mean transverse momentum of Λc+ baryons is seen in p–Pb collisions with respect to pp collisions, while the pT-integrated Λc+/D0 yield ratio was found to be consistent between the two collision systems within the uncertainties
Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC
The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=−2 sector of the meson–baryon interaction at low energies. In particular, the ΛK‾ might help in understanding the origin of states such as the Ξ(1620), whose nature and properties are still under debate. Experimental data on Λ–K and Λ–K‾ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ–K⊕+Λ‾–K− and Λ–K⊕−Λ‾–K+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at s=13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednický–Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ–K⊕−Λ‾–K+ correlations show the presence of several structures at relative momenta k⁎ above 200 MeV/c, compatible with the Ω baryon, the Ξ(1690), and Ξ(1820) resonances decaying into Λ–K− pairs. The low k⁎ region in the Λ–K⊕−Λ‾–K+ also exhibits the presence of the Ξ(1620) state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the Ξ(1620) decaying into ΛK−
Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at = 13 TeV
International audienceThe production of π, K, and is measured in pp collisions at = 13 TeV in different topological regions of the events. Particle transverse momentum (p) spectra are measured in the “toward”, “transverse”, and “away” angular regions defined with respect to the direction of the leading particle in the event. While the toward and away regions contain the fragmentation products of the near-side and away-side jets, respectively, the transverse region is dominated by particles from the Underlying Event (UE). The relative transverse activity classifier, R = N/〈N〉, is used to group events according to their UE activity, where N is the measured charged-particle multiplicity per event in the transverse region and 〈N〉 is the mean value over all the analysed events. The first measurements of identified particle p spectra as a function of R in the three topological regions are reported. It is found that the yield of high transverse momentum particles relative to the R-integrated measurement decreases with increasing R in both the toward and the away regions, indicating that the softer UE dominates particle production as R increases and validating that R can be used to control the magnitude of the UE. Conversely, the spectral shapes in the transverse region harden significantly with increasing R. This hardening follows a mass ordering, being more significant for heavier particles. Finally, it is observed that the p-differential particle ratios \left(\textrm{p}+\overline{\textrm{p}}\right)/\left({\uppi}^{+}+{\uppi}^{-}\right) and (K + K)/(π + π) in the low UE limit (R → 0) approach expectations from Monte Carlo generators such as PYTHIA 8 with Monash 2013 tune and EPOS LHC, where the jet-fragmentation models have been tuned to reproduce ee results.[graphic not available: see fulltext
Anisotropic flow and flow fluctuations of identified hadrons in Pb–Pb collisions at = 5.02 TeV
International audienceThe first measurements of elliptic flow of π, K, , , , ϕ, , and using multiparticle cumulants in Pb–Pb collisions at = 5.02 TeV are resented. Results obtained with two- (v{2}) and four-particle cumulants (v{4}) are shown as a function of transverse momentum, p, for various collision centrality intervals. Combining the data for both v{2} and v{4} also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark–gluon plasma. The characteristic features observed in previous p-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low p and the approximate scaling with the number of constituent quarks at intermediate p, are similarly present in the four-particle correlations and the combinations of v{2} and v{4}. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide p range.[graphic not available: see fulltext