2,391 research outputs found

    Pleistocene plateau ice fields in the High Atlas, Morocco

    Get PDF
    Large ice fields (>25 km² ) formed over the Tazaghart and Iouzagner plateaux of the High Atlas, Morocco, during the Late Pleistocene. The plateau ice fields were drained by large valley glaciers forming a series of moraine assemblages. Four moraine units have been mapped and subdivided on the basis of morphostratigraphy and the degree of soil weathering. Soil profile development index (PDI) values indicate that the moraine units are widely separated in time with the oldest moraines deeply weathered and degraded whereas soils are absent on the youngest moraines. The highest moraine unit was formed by a small niche glacier which was present as recently as the mid 20th Century. Pleistocene glaciers are likely to have been associated with wetter conditions than today in addition to colder air temperatures. Combined with ice in neighbouring areas, such as the Toubkal Massif, the SW High Atlas supported some of the largest glaciers in Africa during the Pleistocene. The extent of glaciation with ice exploiting and breaching drainage divides has major implications for landscape development. The evolution of the High Atlas is therefore strongly shaped by glaciation and this is closely intertwined with tectonic, fluvial and slope processes

    Pleistocene glaciation of Fenland, England, and its implications for evolution of the region.

    Get PDF
    Detailed investigation of landforms and their underlying deposits on the eastern margin of Fenland, East Anglia, demonstrated that they represent a series of glaciofluvial delta-fan and related sediments. Associated with these deposits are glacially dislocated sediments including tills, meltwater and pre-existing fluvial sediments. These 'Skertchly Line' deposits occur in the context of a substantial ice lobe that entered Fenland from the N to NE, dammed the streams entering the basin and caused glacial lakes to form in the valleys on the margins. Bulldozing by the ice lobe caused a series of ice-pushed ridges to form at the dynamic margin, especially at the ice maximum and during its retreat phases. Meltwater formed a series of marginal fans that coalesced into marginal accumulations in the SE of the basin. The ice lobe is named the Tottenhill glaciation. Further investigations of the Fenland margin have revealed the extent of the Tottenhill glaciation in the Fenland Basin, to the south and west, in sufficient detail to demonstrate the nature of the Tottenhill ice lobe and the landscape left on deglaciation. The ice lobe is likely to have been prone to surging. This is indicated by the low gradient of the ice lobe, the presence of underlying ductile Mesozoic clays, the evidence of ice-marginal flooding and the presence of arcuate glaciotectonic push moraines. Regional correlation, supported by independent numerical geochronology, indicates that the glaciation occurred ca 160 ka, i.e. during the late Middle Pleistocene, Marine Isotope Stage (MIS) 6, the Wolstonian Stage. Comparison and correlation across the southern North Sea Basin confirms that the glaciation is the equivalent of that during the Late Saalian Drenthe Stadial in The Netherlands. The implications of this correlation are presented. Before the glaciation occurred, the Fenland Basin did not exist. It appears to have been initiated by a subglacial tunnel valley system beneath the Anglian (=Elsterian, MIS 12) ice sheet. During the subsequent Hoxnian (=Holsteinian; approx. MIS 11) interglacial, the sea invaded the drainage system inherited following the glacial retreat. The evolution through the subsequent ca 200 ka Early to Middle Wolstonian substages, the interval between the Hoxnian (Holsteinian) temperate Stage and the Wolstonian glaciation, represents a period during which fluvial and periglacial activity modified the landscape under cold climates, and organic sediments were laid down during a warmer event. Palaeolithic humans were also periodically present during this interval, their artefacts having been reworked by the subsequent glaciation. The deglaciation was followed by re-establishment of the rivers associated with the deposition of Late Wolstonian (Warthe Stadial) gravels and sands, and later, deposits of the Ipswichian interglacial (=Eemian, approx. MIS 5e) including freshwater, then estuarine sediments. Subsequent evolution of the basin occurred during the Devensian Stage (=Weichselian, MIS 5d-2) under predominantly cold, periglacial conditions

    Global glacier dynamics during 100 ka Pleistocene glacial cycles

    Get PDF
    AbstractIce volume during the last ten 100 ka glacial cycles was driven by solar radiation flux in the Northern Hemisphere. Early minima in solar radiation combined with critical levels of atmospheric CO2drove initial glacier expansion. Glacial cycles between Marine Isotope Stage (MIS) 24 and MIS 13, whilst at 100 ka periodicity, were irregular in amplitude, and the shift to the largest amplitude 100 ka glacial cycles occurred after MIS 16. Mountain glaciers in the mid-latitudes and Asia reached their maximum extents early in glacial cycles, then retreated as global climate became increasingly arid. In contrast, larger ice masses close to maritime moisture sources continued to build up and dominated global glacial maxima reflected in marine isotope and sea-level records. The effect of this pattern of glaciation on the state of the global atmosphere is evident in dust records from Antarctic ice cores, where pronounced double peaks in dust flux occur in all of the last eight glacial cycles. Glacier growth is strongly modulated by variations in solar radiation, especially in glacial inceptions. This external control accounts for ~50–60% of ice volume change through glacial cycles. Internal global glacier–climate dynamics account for the rest of the change, which is controlled by the geographic distributions of glaciers.</jats:p

    Trial Protocol: Randomised controlled trial of the effects of very low calorie diet, modest dietary restriction, and sequential behavioural programme on hunger, urges to smoke, abstinence and weight gain in overweight smokers stopping smoking

    Get PDF
    Background\ud Weight gain accompanies smoking cessation, but dieting during quitting is controversial as hunger may increase urges to smoke. This is a feasibility trial for the investigation of a very low calorie diet (VLCD), individual modest energy restriction, and usual advice on hunger, ketosis, urges to smoke, abstinence and weight gain in overweight smokers trying to quit. \ud \ud Methods\ud This is a 3 armed, unblinded, randomized controlled trial in overweight (BMI > 25 kg/m2m^2), daily smokers (CO > 10 ppm); with at least 30 participants in each group. Each group receives identical behavioural support and NRT patches (25 mg(8 weeks),15 mg(2 weeks),10 mg(2 weeks)). The VLCD group receive a 429-559 kcal/day liquid formula beginning 1 week before quitting and continuing for 4 weeks afterwards. The modest energy restricted group (termed individual dietary and activity planning(IDAP)) engage in goal-setting and receive an energy prescription based on individual basal metabolic rate(BMR) aiming for daily reduction of 600 kcal. The control group receive usual dietary advice that accompanies smoking cessation i.e. avoiding feeling hungry but eating healthy snacks. After this, the VLCD participants receive IDAP to provide support for changing eating habits in the longer term; the IDAP group continues receiving this support. The control group receive IDAP 8 weeks after quitting. This allows us to compare IDAP following a successful quit attempt with dieting concurrently during quitting. It also aims to prevent attrition in the unblinded, control group by meeting their need for weight management. Follow-up occurs at 6 and 12 months. \ud \ud Outcome measures include participant acceptability, measured qualitatively by semi-structured interviewing and quantitatively by recruitment and attrition rates. Feasibility of running the trial within primary care is measured by interview and questionnaire of the treatment providers. Adherence to the VLCD is verified by the presence of urinary ketones measured weekly. Daily urges to smoke, hunger and withdrawal are measured using the Mood and Physical Symptoms Scale-Combined (MPSS-C) and a Hunger Craving Score (HCS). 24 hour, 7 day point prevalence and 4-week prolonged abstinence (Russell Standard) is confirmed by CO < 10 ppm. Weight, waist and hip circumference and percentage body fat are measured at each visit. \ud \ud Trial Registration\ud Current controlled trials ISRCTN83865809\ud \u

    Impaired Competence for Pretense in Children with Autism: Exploring Potential Cognitive Predictors.

    Get PDF
    Lack of pretense in children with autism has been explained by a number of theoretical explanations, including impaired mentalising, impaired response inhibition, and weak central coherence. This study aimed to empirically test each of these theories. Children with autism (n=60) were significantly impaired relative to controls (n=65) when interpreting pretense, thereby supporting a competence deficit hypothesis. They also showed impaired mentalising and response inhibition, but superior local processing indicating weak central coherence. Regression analyses revealed that mentalising significantly and independently predicted pretense. The results are interpreted as supporting the impaired mentalising theory and evidence against competing theories invoking impaired response inhibition or a local processing bias. The results of this study have important implications for treatment and intervention

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRβ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types

    The population biology of the living coelacanth studied over 21 years

    Get PDF
    Between 1986 and 2009 nine submersible and remote-operated vehicle expeditions were carried out to study the population biology of the coelacanth Latimeria chalumnae in the Comoro Islands, located in the western Indian Ocean. Latimeria live in large overlapping home ranges that can be occupied for as long as 21 years. Most individuals are confined to relatively small home ranges, resting in the same caves during the day. One hundred and forty five coelacanths are individually known, and we estimate the total population size of Grande Comore as approximately 300–400 adult individuals. The local population inhabiting a census area along an 8-km section of coastline remained stable for at least 18 years. Using LASER-assisted observations, we recorded length frequencies between 100 and 200 cm total length and did not encounter smaller-bodied individuals (\100 cm total length). It appears that coelacanth recruitment in the observation areas occur mainly by immigrating adults. We estimate that the mean numbers of deaths and newcomers are 3–4 individuals per year, suggesting that longevity may exceed 100 years. The domestic fishery represents a threat to the long-term survival of coelacanths in the study area. Recent changes in the local fishery include a decrease in the abundance of the un-motorized canoes associated with exploitation of coelacanths and an increase in motorized canoes. Exploitation rates have fallen in recent years, and by 2000, had fallen to lowest ever reported. Finally, future fishery developments are discussed

    Equipping for risk: Lessons learnt from the UK shale-gas experience on assessing environmental risks for the future geoenergy use of the deep subsurface

    Get PDF
    \ua9 2024 The Authors. Summary findings are presented from an investigation to improve understanding of the environmental risks associated with developing an unconventional-hydrocarbons industry in the UK. The EQUIPT4RISK project, funded by UK Research Councils, focused on investigations around Preston New Road (PNR), Fylde, Lancashire, and Kirby Misperton Site A (KMA), North Yorkshire, where operator licences to explore for shale gas by hydraulic fracturing (HF) were issued in 2016, although exploration only took place at PNR. EQUIPT4RISK considered atmospheric (greenhouse gases, air quality), water (groundwater quality) and solid-earth (seismicity) compartments to characterise and model local conditions and environmental responses to HF activities. Risk assessment was based on the source-pathway-receptor approach. Baseline monitoring of air around the two sites characterised the variability with meteorological conditions, and isotopic signatures were able to discriminate biogenic methane (cattle) from thermogenic (natural-gas) sources. Monitoring of a post-HF nitrogen-lift (well-cleaning) operation at PNR detected the release of atmospheric emissions of methane (4.2 \ub1 1.4 t CH4). Groundwater monitoring around KMA identified high baseline methane concentrations and detected ethane and propane at some locations. Dissolved methane was inferred from stable-isotopic evidence as overwhelmingly of biogenic origin. Groundwater-quality monitoring around PNR found no evidence of HF-induced impacts. Two approaches for modelling induced seismicity and associated seismic risk were developed using observations of seismicity and operational parameters from PNR in 2018 and 2019. Novel methodologies developed for monitoring include use of machine learning to identify fugitive atmospheric methane, Bayesian statistics to assess changes to groundwater quality, a seismicity forecasting model seeded by the HF-fluid injection rate and high-resolution monitoring of soil-gas methane. The project developed a risk-assessment framework, aligned with ISO 31000 risk-management principles, to assess the theoretical combined and cumulative environmental risks from operations over time. This demonstrated the spatial and temporal evolution of risk profiles: seismic and atmospheric impacts from the shale-gas operations are modelled to be localised and short-lived, while risk to groundwater quality is longer-term

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    Structural and mechanical properties of folded protein hydrogels with embedded microbubbles

    Get PDF
    Globular folded proteins are powerful building blocks to create biomaterials with mechanical robustness and inherent biological functionality. Here we explore their potential as advanced drug delivery scaffolds, by embedding microbubbles (MBs) within a photo-activated, chemically cross-linked bovine serum albumin (BSA) protein network. Using a combination of circular dichroism (CD), rheology, small angle neutron scattering (SANS) and microscopy we determine the nanoscale and mesoscale structure and mechanics of this novel multi-composite system. Optical and confocal microscopy confirms the presence of MBs within the protein hydrogel, their reduced diffusion and their effective rupture using ultrasound, a requirement for burst drug release. CD confirms that the inclusion of MBs does not impact the proportion of folded proteins within the cross-linked protein network. Rheological characterisation demonstrates that the mechanics of the BSA hydrogels is reduced in the presence of MBs. Furthermore, SANS reveals that embedding MBs in the protein hydrogel network results in a smaller number of clusters that are larger in size (∼16.6% reduction in number of clusters, 17.4% increase in cluster size). Taken together, we show that MBs can be successfully embedded within a folded protein network and ruptured upon application of ultrasound. The fundamental insight into the impact of embedded MBs in protein scaffolds at the nanoscale and mesoscale is important in the development of future platforms for targeted and controlled drug delivery applications
    corecore