4 research outputs found

    High-resolution supernova neutrino spectra represented by a simple fit

    Full text link
    To study the capabilities of supernova neutrino detectors, the instantaneous spectra are often represented by a quasi-thermal distribution of the form f(E) = E^alpha e^{-(alpha+1)E/E_{av}} where E_{av} is the average energy and alpha a numerical parameter. Based on a spherically symmetric supernova model with full Boltzmann neutrino transport we have, at a few representative post-bounce times, re-converged the models with vastly increased energy resolution to test the fit quality. For our examples, the spectra are well represented by such a fit in the sense that the counting rates for a broad range of target nuclei, sensitive to different parts of the spectrum, are reproduced very well. Therefore, the mean energy and root-mean-square energy of numerical spectra hold enough information to provide the correct alpha and to forecast the response of multi-channel supernova neutrino detection.Comment: 6 pages, including 4 figures and 2 tables. Clarifying paragraphs added; results unchanged. Matches published version in PR

    Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    Get PDF
    Neutrino oscillations, especially to light sterile states, can affect the nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 Msun electron-capture supernova, whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations both between active and active-sterile flavors. We also take into account the alpha-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution which depend in a subtle way on the relative radial positions of the sterile MSW resonances, of collective flavor transformations, and on the formation of alpha particles. For the adopted supernova progenitor, we find that neutrino oscillations, also to a sterile state with eV-mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and alpha-effect.Comment: 19 pages, 12 figures; accepted for publication by Ap

    Core-Collapse Supernovae: Reflections and Directions

    Full text link
    Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the long-standing puzzle how collapsing stars achieve to explode. In this article our current knowledge of the processes that contribute to the success of the explosion mechanism are concisely reviewed. After a short overview of the sequence of stages of stellar core-collapse events, the general properties of the progenitor-dependent neutrino emission will be briefly described. Applying sophisticated neutrino transport in axisymmetric (2D) simulations with general relativity as well as in simulations with an approximate treatment of relativistic effects, we could find successful neutrino-driven explosions for a growing set of progenitor stars. First results of three-dimensional (3D) models have been obtained, and magnetohydrodynamic simulations demonstrate that strong initial magnetic fields in the pre-collapse core can foster the onset of neutrino-powered supernova explosions even in nonrotating stars. These results are discussed in the context of the present controversy about the value of 2D simulations for exploring the supernova mechanism in realistic 3D environments, and they are interpreted against the background of the current disagreement on the question whether the standing accretion shock instability (SASI) or neutrino-driven convection is the crucial agency that supports the onset of the explosion.Comment: 36 pages, 20 figures (43 eps files); submitted to Progress of Theoretical and Experimental Physics (PTEP

    Flavor-dependent neutrino angular distribution in core-collapse supernovae

    No full text
    According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron-lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15 and 25 M_sun) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for νe\nu_e, smaller for νˉe\bar\nu_e, and smallest for νx\nu_x, where x=μx=\mu or τ\tau. While the energy-integrated νe\nu_e minus νˉe\bar\nu_e angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases.Comment: 10 pages, including 8 figures. Minor changes in the text, matches version accepted for publication in ApJ. Data and animated visualization available at: http://wwwmpa.mpa-garching.mpg.de/ccsnarchive/data/Tamborra2017
    corecore