101 research outputs found

    COVAD survey 2 long-term outcomes: unmet need and protocol

    Get PDF
    Vaccine hesitancy is considered a major barrier to achieving herd immunity against COVID-19. While multiple alternative and synergistic approaches including heterologous vaccination, booster doses, and antiviral drugs have been developed, equitable vaccine uptake remains the foremost strategy to manage pandemic. Although none of the currently approved vaccines are live-attenuated, several reports of disease flares, waning protection, and acute-onset syndromes have emerged as short-term adverse events after vaccination. Hence, scientific literature falls short when discussing potential long-term effects in vulnerable cohorts. The COVAD-2 survey follows on from the baseline COVAD-1 survey with the aim to collect patient-reported data on the long-term safety and tolerability of COVID-19 vaccines in immune modulation. The e-survey has been extensively pilot-tested and validated with translations into multiple languages. Anticipated results will help improve vaccination efforts and reduce the imminent risks of COVID-19 infection, especially in understudied vulnerable groups

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Impaired health-related quality of life in idiopathic inflammatory myopathies: a cross-sectional analysis from the COVAD-2 e-survey

    Get PDF
    Objectives To investigate health-related quality of life in patients with idiopathic inflammatory myopathies (IIMs) compared with those with non-IIM autoimmune rheumatic diseases (AIRDs), non-rheumatic autoimmune diseases (nrAIDs) and without autoimmune diseases (controls) using Patient-Reported Outcome Measurement Information System (PROMIS) instrument data obtained from the second COVID-19 vaccination in autoimmune disease (COVAD-2) e-survey database. Methods Demographics, diagnosis, comorbidities, disease activity, treatments and PROMIS instrument data were analysed. Primary outcomes were PROMIS Global Physical Health (GPH) and Global Mental Health (GMH) scores. Factors affecting GPH and GMH scores in IIMs were identified using multivariable regression analysis. Results We analysed responses from 1582 IIM, 4700 non-IIM AIRD and 545 nrAID patients and 3675 controls gathered through 23 May 2022. The median GPH scores were the lowest in IIM and non-IIM AIRD patients {13 [interquartile range (IQR) 10–15] IIMs vs 13 [11–15] non-IIM AIRDs vs 15 [13–17] nrAIDs vs 17 [15–18] controls, P < 0.001}. The median GMH scores in IIM patients were also significantly lower compared with those without autoimmune diseases [13 (IQR 10–15) IIMs vs 15 (13–17) controls, P < 0.001]. Inclusion body myositis, comorbidities, active disease and glucocorticoid use were the determinants of lower GPH scores, whereas overlap myositis, interstitial lung disease, depression, active disease, lower PROMIS Physical Function 10a and higher PROMIS Fatigue 4a scores were associated with lower GMH scores in IIM patients. Conclusion Both physical and mental health are significantly impaired in IIM patients, particularly in those with comorbidities and increased fatigue, emphasizing the importance of patient-reported experiences and optimized multidisciplinary care to enhance well-being in people with IIMs

    Derivative weighted active insulin control algorithms and trials

    Get PDF
    Close control of blood glucose levels significantly reduces vascular complications in diabetes. Heavy derivative controllers utilising the data density available from emerging biosensors are developed to provide tight, optimal control of elevated blood glucose levels. A two-compartment human model is developed for intravenous infusion from physiologically verified subcutaneous infusion models to enable a first of its kind, proof-of-concept clinical trial. Results show tight control with very similar performance to modelled behaviour and strong correlation between modelled insulin used versus the amounts used in clinical trials to validate the models and methods developed

    Derivative weighted active insulin control algorithms and intensive care unit trials

    No full text
    Invited from IFAC Melbourne ConferenceCritically ill-patients often experience stress-induced hyperglycemia. This research demonstrates the effectiveness of a simple automated insulin infusion for controlling the rise and duration of blood glucose excursion in critically ill-patients. Heavy derivative controllers derived from a simple, two-compartment model reduced blood glucose excursion 79–89% after a glucose input in proof-of-concept clinical trials. Modelled performance is very similar to clinical results, including a strong correlation between modelled and actual insulin consumed, validating the fundamental models and methods. However, the need for additional dynamics in the model employed is clearly illustrated despite capturing the essential dynamics for this problem

    Derivative weighted active insulin control modelling and clinical trials for ICU patients

    No full text
    doi: 10.1016/j.medengphy.2004.08.004Close control of blood glucose levels significantly reduces vascular complications in Type 1 and Type 2 diabetic individuals. Heavy derivative controllers using the data density available from emerging biosensors are developed to provide tight, optimal control of elevated blood glucose levels, while robustly handling variation in patient response. A two-compartment glucose regulatory system model is developed for intravenous infusion from physiologically verified subcutaneous infusion models enabling a proof-of-concept clinical trial at the Christchurch Hospital Department of Intensive Care Medicine. This clinical trial is the first of its kind to test a high sample rate feedback control algorithm for tight glucose regulation. The clinical trial results show tight control with reductions of 79-89% in blood glucose excursions for an oral glucose tolerance test. Experimental performance is very similar to modelled behaviour. Results include a clear need for an additional accumulator dynamic for insulin behaviour in transport to the blood and strong correlation of 10% or less between modelled insulin infused and the amounts used in clinical trials. Finally, the heavy derivative PD control approach is seen to be able to bring blood glucose levels below the (elevated) basal level, showing the potential for truly tight control
    • …
    corecore