310 research outputs found

    Large-scale cosmic flows and moving dark energy

    Get PDF
    Large-scale matter bulk flows with respect to the cosmic microwave background have very recently been detected on scales 100 Mpc/h and 300 Mpc/h by using two different techniques showing an excellent agreement in the motion direction. However, the unexpectedly large measured amplitudes are difficult to understand within the context of standard LCDM cosmology. In this work we show that the existence of such a flow could be signaling the presence of moving dark energy at the time when photons decoupled from matter. We also comment on the relation between the direction of the CMB dipole and the preferred axis observed in the quadrupole in this scenario.Comment: 11 pages, 2 figures. New comments and references included. Final version to appear in JCA

    Competition between local potentials and attractive particle-particle interactions in superlattices

    Full text link
    Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the system's properties than modulations in the attractive on-site interaction. This is the same conclusions we previously (Phys. Rev. B 71, 125130) obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures.Comment: 8 pages, 2 figure

    Cross-border-assisted reproduction: a qualitative account of UK travellers’ experiences

    Get PDF
    Surveys on patients’ experiences of cross-border fertility treatment have reported a range of positive and challenging features. However, the number of such studies is limited, and there is no detailed qualitative account of the experiences of UK patients who travel overseas for fertility treatment. The present study used a cross-sectional, qualitative design and in-depth interviews. Fifty-one participants (41 women and 10 men, representing 41 treatment ‘cases’) participated in semi-structured interviews. The experiences reported were broadly positive with a large proportion of participants (39 cases, 95%) citing a favourable overall experience with only two cases (5%) reporting a more negative experience. Thematic analysis revealed 6 major categories and 20 sub-categories, which described the positive and challenging aspects of cross-border fertility travel. The positive aspects were represented by the categories: ‘access’, ‘control’ and ‘care and respect’. The more challenging aspects were categorized as ‘logistics and coordination of care’, ‘uncertainty’ and ‘cultural dissonance’. The study confirms findings from others that despite some challenges, there is a relatively high level of patient satisfaction with cross-border treatment with participants able to extend the boundaries of their fertility-seeking trajectories and in some cases, regain a sense of control over their treatment

    Epigenome-wide SRC-1 mediated gene silencing represses cellular differentiation in advanced breast cancer

    Get PDF
    Abstract Purpose: Despite the clinical utility of endocrine therapies for estrogen receptor–positive (ER) breast cancer, up to 40% of patients eventually develop resistance, leading to disease progression. The molecular determinants that drive this adaptation to treatment remain poorly understood. Methylome aberrations drive cancer growth yet the functional role and mechanism of these epimutations in drug resistance are poorly elucidated. Experimental Design: Genome-wide multi-omics sequencing approach identified a differentially methylated hub of prodifferentiation genes in endocrine resistant breast cancer patients and cell models. Clinical relevance of the functionally validated methyl-targets was assessed in a cohort of endocrine-treated human breast cancers and patient-derived ex vivo metastatic tumors. Results: Enhanced global hypermethylation was observed in endocrine treatment resistant cells and patient metastasis relative to sensitive parent cells and matched primary breast tumor, respectively. Using paired methylation and transcriptional profiles, we found that SRC-1–dependent alterations in endocrine resistance lead to aberrant hypermethylation that resulted in reduced expression of a set of differentiation genes. Analysis of ER-positive endocrine-treated human breast tumors (n = 669) demonstrated that low expression of this prodifferentiation gene set significantly associated with poor clinical outcome (P = 0.00009). We demonstrate that the reactivation of these genes in vitro and ex vivo reverses the aggressive phenotype. Conclusions: Our work demonstrates that SRC-1-dependent epigenetic remodeling is a ’high level’ regulator of the poorly differentiated state in ER-positive breast cancer. Collectively these data revealed an epigenetic reprograming pathway, whereby concerted differential DNA methylation is potentiated by SRC-1 in the endocrine resistant setting. Clin Cancer Res; 24(15); 3692–703. ©2018 AACR.</jats:p

    Influence of impurity scattering on tunneling conductance in normal metal- d -wave superconductor junctions

    Full text link
    Tunneling conductance spectra between a normal metal / d-wave superconductor junction under the presence of bulk impurities in the superconductor are studied. The quasiclassical theory has been applied to calculate the spatial variation of the pair potential and the effect of impurity scattering has been introduced by t-matrix approximation. The magnitude of a subdominant s-wave component at the interface is shown to robust against the impurity scattering while that for a subdominant dxyd_{xy}-wave component is largely suppressed with the increase of the impurity scattering rate. The zero-bias conductance peak due to the zero-energy Andreev bound states is significantly broadened for the case of Born limit impurity compared with that of unitary limit impurity.Comment: 14 pages, 5 figure

    Global Properties of Solar Flares

    Full text link

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore