10 research outputs found

    Increased rate of parental postpartum depression and traumatization in moderate and late preterm infants is independent of the infant's motor repertoire

    No full text
    Background: Moderately and late preterrn infants represent a considerable and increasing proportion of infants cared for in neonatal departments worldwide. Parents of preterm infants are at risk of postpartal depression (PPD) and posttraumatic stress disorder (PTSD), and preterm infants are at risk of developmental impairment. Aim: This study aimed to assess (1) the incidence of parental PPD and PTSD in moderate to late preterm infants in comparison to full-term infants and (2) the influence of infants' motor repertoire assessed by Prechtl's general movements and illness severity on parental PPD and PTSD. Subjects: We studied 60 mothers and 56 fathers of 69 preterm infants (born at 32 to 37 weeks of gestation) and 32 mothers and 29 fathers of 34 full-term infants. Outcome measures: We assessed the incidence of parental PPD, PTSD and perceived social support as well as infants' illness severity and motor repertoire at birth, term and 3 months corrected age. Results: Preterm mothers and fathers had significant higher depression scores after birth compared to full-term parents (p = 0.033 and 0.021). Preterm fathers also had higher traumatization scores compared to full-term fathers (p = 0.007). Probable or possible PPD/PTSD was not associated with infant's illness severity or quality of motor repertoire. No differences in motor development were found between preterm and full-term infants. Conclusion: Moderate to late preterm infants' parents are at increased risk for PPD irrespective of infants' motor repertoire or illness severity. (C) 2014 Elsevier Ireland Ltd. All rights reserved

    Effects of ketamine on neurogenesis, extracellular matrix homeostasis and proliferation in hypoxia-exposed HT22 murine hippocampal neurons

    No full text
    Ketamine is a widely used drug in pediatric anesthesia, and both neurotoxic and neuroprotective effects have been associated with its use. There are only a few studies to date which have examined the effects of ketamine on neurons under hypoxic conditions, which may lead to severe brain damage and poor neurocognitive outcomes in neonates. In the present study, the effects of ketamine on cellular pathways associated with neurogenesis, extracellular matrix homeostasis and proliferation were examined in vitro in hypoxia-exposed neurons. Differentiated HT22 murine hippocampal neurons were treated with 1, 10 and 20 mu M ketamine and cultured under hypoxic or normoxic conditions for 24 h followed by quantitative PCR analysis of relevant candidate genes. Ketamine treatment did not exert any notable effects on the mRNA expression levels of markers of neurogenesis (neuronal growth factor and syndecan 1), extracellular matrix homeostasis (matrix-metalloproteinase 2 and 9, tenascin C and tenascin R) or proliferation markers (Ki67 and proliferating cell nuclear antigen) compared with the respective untreated controls. However, there was a tendency towards downregulation of multiple cellular markers under hypoxic conditions and simultaneous ketamine treatment. No dose-dependent association was found in the ketamine treated groups for genetic markers of neurogenesis, extracellular matrix homeostasis or proliferation. Based on the results, ketamine may have increased the vulnerability of hippocampal neurons in vitro to hypoxia, independent of the dose. The results of the present study contribute to the ongoing discussion on the safety concerns around ketamine use in pediatric clinical practice from a laboratory perspective

    Brain-Restricted Inhibition of IL-6 Trans-Signaling Mildly Affects Metabolic Consequences of Maternal Obesity in Male Offspring

    No full text
    Maternal obesity greatly affects next generations, elevating obesity risk in the offspring through perinatal programming and flawed maternal and newborn nutrition. The exact underlying mechanisms are poorly understood. Interleukin-6 (IL-6) mediates its effects through a membrane-bound receptor or by trans-signaling (tS), which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). As IL-6 tS mediates western-style diet (WSD) effects via chronic low-grade inflammation (LGI) and LGI is an important mediator in brain-adipose tissue communication, this study aims at determining the effects of maternal obesity in a transgenic mouse model of brain-restricted IL-6tS inhibition ((GFAPsgp130)) on offspring's short- and long-term body composition and epigonadal white adipose tissue (egWAT) metabolism. Female wild type (WT) or transgenic mice were fed either standard diet (SD) or WSD pregestationally, during gestation, and lactation. Male offspring received SD from postnatal day (P)21 to P56 and were metabolically challenged with WSD from P56 to P120. At P21, offspring from WT and transgenic dams that were fed WSD displayed increased body weight and egWAT mass, while glucose tolerance testing showed the strongest impairment in (WSD)-W-GFAPsgp130 offspring. Simultaneously, egWAT proteome reveals a characteristic egWAT expression pattern in offspring as a result of maternal conditions. IL-6tS inhibition in transgenic mice was in tendency associated with lower body weight in dams on SD and their respective offspring but blunted by the WSD. In conclusion, maternal nutrition affects offspring's body weight and egWAT metabolism predominantly independent of IL-6tS inhibition, emphasizing the importance of maternal and newborn nutrition for long-term offspring health

    Maternal Exercise Mediates Hepatic Metabolic Programming via Activation of AMPK-PGC1 alpha Axis in the Offspring of Obese Mothers

    No full text
    Maternal obesity is associated with an increased risk of hepatic metabolic dysfunction for both mother and offspring and targeted interventions to address this growing metabolic disease burden are urgently needed. This study investigates whether maternal exercise (ME) could reverse the detrimental effects of hepatic metabolic dysfunction in obese dams and their offspring while focusing on the AMP-activated protein kinase (AMPK), representing a key regulator of hepatic metabolism. In a mouse model of maternal western-style-diet (WSD)-induced obesity, we established an exercise intervention of voluntary wheel-running before and during pregnancy and analyzed its effects on hepatic energy metabolism during developmental organ programming. ME prevented WSD-induced hepatic steatosis in obese dams by alterations of key hepatic metabolic processes, including activation of hepatic ss-oxidation and inhibition of lipogenesis following increased AMPK and peroxisome-proliferator-activated-receptor-gamma-coactivator-1 alpha (PGC-1 alpha)-signaling. Offspring of exercised dams exhibited a comparable hepatic metabolic signature to their mothers with increased AMPK-PGC1 alpha-activity and beneficial changes in hepatic lipid metabolism and were protected from WSD-induced adipose tissue accumulation and hepatic steatosis in later life. In conclusion, this study demonstrates that ME provides a promising strategy to improve the metabolic health of both obese mothers and their offspring and highlights AMPK as a potential metabolic target for therapeutic interventions

    Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming

    No full text
    Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPAR alpha) and PPAR coactivator-1 alpha (PGC1 alpha) signaling with reduced hepatic lipogenesis and increased hepatic beta-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD
    corecore