5 research outputs found

    A CFD study of IGV vane number on hydraulic characteristics and pressure pulsation of an is centrifugal pump

    Get PDF
    Vane number is an important parameter of IGV device, which indirectly affects hydraulic performance and pressure pulsation characteristics of the attached pump. In this study, based on an IS pump, the influences of vane number on hydraulic performance and pressure pulsation characteristics were considered. Four set of IGV devices were generated to assemble to the pump with 5, 6, 7 and 9 vanes, respectively. Then the three-dimensional unsteady flow fields were simulated using RNG k-ε turbulence model and sliding mesh by Fluent-16.0. The numerical results showed good agreement with the experimental data, which validated the numerical models. The effects of vane number on pump head and efficiency are different. 6 vanes IGV device can produce higher head while 7 or 9 vanes can bring about higher efficiency. Similarly, the influences of vane number on pressure pulsation in time domain and frequency domain are also complex. 6 vanes IGV device can remarkably decrease power spectral density at all flow rate conditions, but 7 vanes IGV device can improve pump pressure pulsation characteristics and realize better hydraulic stability. Therefore, it is hard to determine the best vane number, but 6 vanes IGV device is suggested for engineering application to obtain better hydraulic performance

    A numerically research on energy loss evaluation in a centrifugal pump system based on local entropy production method

    No full text
    Inspired by wide application of the second law of thermodynamics to flow and heat transfer devices, local entropy production analysis method was creatively introduced into energy assessment system of centrifugal water pump. Based on Reynolds stress turbulent model and energy equation model, the steady numerical simulation of the whole flow passage of one IS centrifugal pump was carried out. The local entropy production terms were calculated by user defined functions, mainly including wall entropy production, turbulent entropy production, and viscous entropy production. The numerical results indicated that the irreversible energy loss calculated by the local entropy production method agreed well with that calculated by the traditional method but with some deviations which were probably caused by high rotatability and high curvature of impeller and volute. The wall entropy production and turbulent entropy production took up large part of the whole entropy production about 48.61% and 47.91%, respectively, which indicated that wall friction and turbulent fluctuation were the major factors in affecting irreversible energy loss. Meanwhile, the entropy production rate distribution was discussed and compared with turbulent kinetic energy dissipation rate distribution, it showed that turbulent entropy production rate increased sharply at the near wall regions and both distributed more uniformly. The blade region in leading edge near suction side, trailing edge and volute tongue were the main regions to generate irreversible exergy loss. This research broadens a completely new view in evaluating energy loss and further optimizes pump using entropy production minimization

    Experimental Research and Numerical Simulation on Gas-Liquid Separation Performance at High Gas Void Fraction of Helically Coiled Tube Separator

    No full text
    The industrial removal process of the light hydrocarbon and water from wet natural gas can be simulated in laboratory with the independently designed helically coiled tube gas-liquid separator. Experiment and numerical simulation are combined to analyze the influences of various inlet velocities and gas void fractions on the gas-liquid separation efficiency and pressure-drop between the inlet and outlet of the helically coiled tube. The results show that, at the inlet velocity of 4 m/s to 18 m/s and the gas void fraction of 88% to 97% for the gas-liquid mixture, the gas-liquid separation efficiency increases at the beginning and then decreases with increasing inlet velocity. Afterwards there is another increasing trend again. The gradient of pressure-drop increases slowly and then fast with the increasing inlet velocity. On the other hand, the gas-liquid separation efficiency first increases with the gas void fraction and then shows a decreasing trend while the pressure-drop keeps falling down with the gas void fraction increasing. Above all the optimal operating parameters of the helically coiled tube separator are inlet velocity of 13 m/s and gas void fraction of 93%, and the separation efficiency and pressure-drop are 95.2% and 0.3 MPa, respectively
    corecore