254 research outputs found

    Molecular Virology of Hepatitis C Virus (HCV): 2006 Update

    Get PDF
    Fascinating progress in the understanding of the molecular biology of hepatitis C virus (HCV) was achieved recently. The replicon system revolutionized the investigation of HCV RNA replication and facilitated drug discovery. Novel systems for functional analyses of the HCV glycoproteins allowed the validation of HCV receptor candidates and the investigation of cell entry mechanisms. Most recently, recombinant infectious HCV could be produced in cell culture, rendering all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In this review, we summarize recent advances and discuss future research directions

    Evolving therapies in the treatment of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The major etiologies and risk factors for HCC development are well defined and some of the steps involved in hepatocarcinogenesis have been elucidated in recent years. Therapeutic options that can be applied in curative or palliative intention are available and are dependent on the HCC stage. The therapeutic options fall into five main categories: (1) surgical interventions, including tumor resection and liver transplantation, (2) percutaneous interventions, including ethanol injection and radiofrequency thermal ablation, (3) transarterial interventions, including embolization and chemoembolization, (4) radiation therapy, and (5) drugs as well as gene and immune therapies. Until recently, no therapy existed for patients with advanced HCC. In 2007 a multikinase inhibitor (sorafenib) showed for the first time a significant increase in overall survival in patients with advanced HCC. Furthermore, several other agents that target different factors of hepatocarcinogenesis (eg, epidermal growth factor, insulin-like growth factors, hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, platelet-derived growth factor, and the transforming growth factors-α and -β), have emerged and been tested in clinical trials. This review gives an overview of the current therapeutic strategies and their clinical impact

    Translation of stable hepadnaviral mRNA cleavage fragments induced by the action of phosphorothioate-modified antisense oligodeoxynucleotides

    Get PDF
    Phosphorothioate-modified antisense oligodeoxynucleotides (ASOs) are used to suppress gene expression by inducing RNase H-mediated cleavage with subsequent degradation of the target mRNA. However, previous observations suggest that ASO/RNase H can also result in the generation of stable mRNA cleavage fragments and expression of truncated proteins. Here, we addressed the underlying translational mechanisms in more detail using hepadnavirus-transfected hepatoma cells as a model system of antisense therapy. Generation of stable mRNA cleavage fragments was restricted to the ASO/RNase H pathway and not observed upon cotransfection of isosequential small interfering RNA or RNase H-incompetent oligonucleotides. Furthermore, direct evidence for translation of mRNA fragments was established by polysome analysis. Polysome-associated RNA contained cleavage fragments devoid of a 5′ cap structure indicating that translation was, at least in part, cap-independent. Further analysis of the uncapped cleavage fragments revealed that their 5′ terminus and initiation codon were only separated by a few nucleotides suggesting a 5′ end-dependent mode of translation, whereas internal initiation could be ruled out. However, the efficiency of translation was moderate compared to uncleaved mRNA and amounted to 13–24% depending on the ASO used. These findings provide a rationale for understanding the translation of mRNA fragments generated by ASO/RNase H mechanistically

    Clinical response to Auron Misheil Therapy in a man with advanced multifocal hepatocellular carcinoma: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Auron Misheil Therapy was developed based on similarities between carcinogenesis and inflammation. Auron Misheil Therapy is a combination of natural and synthetic compounds, including anti-inflammatory drugs and insulin, expected to exhibit synergistic effects.</p> <p>Case presentation</p> <p>Here, we report the case of a 78-year-old Caucasian male patient who presented with multifocal hepatocellular carcinoma and chronic hepatitis C virus infection. Over a four-year period our patient was treated with radiofrequency ablation and transarterial chemoembolization. After these treatments there was tumor progression, with new hyperperfused lesions without evidence of extrahepatic tumor involvement. Our patient refused sorafenib therapy. Therefore, he received twice daily intramuscular injections of Auron Misheil Therapy on an outpatient basis for two months. Partial remission of the hepatic lesions was observed eight weeks after the start of treatment, and confirmed four weeks later. Unfortunately, at that time our patient refused therapy due to dizziness. During follow-up two target lesions remained stable, but one lesion increased in size. At the latest follow-up, one year later, there was still tumor control.</p> <p>Conclusion</p> <p>While the mechanisms underlying the antitumor effects of Auron Misheil Therapy are not fully understood, stable disease and remissions have been observed in different types of tumors, including hepatocellular carcinoma.</p

    Identification of Naturally Processed Hepatitis C Virus-Derived Major Histocompatibility Complex Class I Ligands

    Get PDF
    Fine mapping of human cytotoxic T lymphocyte (CTL) responses against hepatitis C virus (HCV) is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC) class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS)/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS) 3 and 5B (NS31406–1415 and NS5B2594–2602). In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future

    Tetramer enrichment reveals the presence of phenotypically diverse hepatitis C virus-specific CD8+T cells in chronic infection

    Get PDF
    Virus-specific CD8+ T cells are rarely detectable ex vivo by conventional methods during chronic hepatitis C virus (HCV) infection. In this study, however, we were able to detect and characterize HCV-specific CD8+ T cells in all chronically HCV genotype 1a-infected, HLA-A*02:01-positive patients analyzed by performing major histocompatibility complex (MHC) class I tetramer enrichment. Two-thirds of these enriched HCV-specific CD8+ T-cell populations displayed an effector memory phenotype, whereas, surprisingly, one-third displayed a naive-like phenotype despite ongoing viral replication. CD8+ T cells with an effector memory phenotype could not expand in vitro, suggesting exhaustion of these cells. Interestingly, some of the naive-like CD8+ T cells proliferated vigorously upon in vitro priming, whereas others did not. These differences were linked to the corresponding viral sequences in the respective patients. Indeed, naive-like CD8+ T cells from patients with the consensus sequence in the corresponding T-cell epitope did not expand in vitro. In contrast, in patients displaying sequence variations, we were able to induce HCV-specific CD8+ T-cell proliferation, which may indicate infection with a variant virus. Collectively, these data reveal the presence of phenotypically and functionally diverse HCV-specific CD8+ T cells at very low frequencies that are detectable in all chronically infected patients despite viral persistence. IMPORTANCE In this study, we analyzed CD8+ T-cell responses specific for HLA-A*02:01-restricted epitopes in chronically HCV-infected patients, using MHC class I tetramer enrichment. Importantly, we could detect HCV-specific CD8+ T-cell populations in all patients. To further characterize these HCV-specific CD8+ T-cell populations that are not detectable using conventional techniques, we performed phenotypic, functional, and viral sequence analyses. These data revealed different mechanisms for CD8+ T-cell failure in HCV infection, including T-cell exhaustion, viral escape, and functional impairment of naive-like HCV-specific CD8+ T cells

    Immunodominance of HLA-A2-restricted hepatitis C virus-specific CD8+ T cell responses is linked to naive-precursor frequency

    Get PDF
    The impact of naïve precursor frequency on human virus-specific CD8+ T cell immunodominance is not well understood. Using a recently developed MHC class I tetramer enrichment protocol, we found a conserved hierarchy and >10-fold difference in naïve precursor frequencies across three HLA-A2 restricted HCV-specific epitopes. Importantly, the NS31406 epitope with the highest naïve precursor frequency in healthy donors was also the most frequently targeted epitope in a large cohort of chronically HCV-infected patients, both ex vivo and after in vitro stimulation. These results indicate for the first time that immunodominance in a human viral infection is linked to naïve precursor frequency
    corecore