74 research outputs found

    Checkpoint-Dependent Regulation of Origin Firing and Replication Fork Movement in Response to DNA Damage in Fission Yeast

    Get PDF
    To elucidate the checkpoint mechanism responsible for slowing passage through S phase when fission yeast cells are treated with the DNA-damaging agent methyl methanesulfonate (MMS), we carried out two-dimensional gel analyses of replication intermediates in cells synchronized by cdc10 block (in G1) followed by release into synchronous S phase. The results indicated that under these conditions early-firing centromeric origins were partially delayed but late-firing telomeric origins were not delayed. Replication intermediates persisted in MMS-treated cells, suggesting that replication fork movement was inhibited. These effects were dependent on the Cds1 checkpoint kinase and were abolished in cells overexpressing the Cdc25 phosphatase, suggesting a role for the Cdc2 cyclin-dependent kinase. We conclude that both partial inhibition of the firing of a subset of origins and inhibition of replication fork movement contribute to the slowing of S phase in MMS-treated fission yeast cells

    Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer

    Get PDF
    BACKGROUND: Some origins in eukaryotic chromosomes fire more frequently than others. In the fission yeast, Schizosaccharomyces pombe, the relative firing frequencies of the three origins clustered 4-8 kbp upstream of the ura4 gene are controlled by a replication enhancer - an element that stimulates nearby origins in a relatively position-and orientation-independent fashion. The important sequence motifs within this enhancer were not previously localized. RESULTS: Systematic deletion of consecutive segments of ~50, ~100 or ~150 bp within the enhancer and its adjacent core origin (ars3002) revealed that several of the ~50-bp stretches within the enhancer contribute to its function in partially redundant fashion. Other stretches within the enhancer are inhibitory. Some of the stretches within the enhancer proved to be redundant with sequences within core ars3002. Consequently the collection of sequences important for core origin function was found to depend on whether the core origin is assayed in the presence or absence of the enhancer. Some of the important sequences in the core origin and enhancer co-localize with short runs of adenines or thymines, which may serve as binding sites for the fission yeast Origin Recognition Complex (ORC). Others co-localize with matches to consensus sequences commonly found in fission yeast replication origins. CONCLUSIONS: The enhancer within the ura4 origin cluster in fission yeast contains multiple sequence motifs. Many of these stimulate origin function in partially redundant fashion. Some of them resemble motifs also found in core origins. The next step is to identify the proteins that bind to these stimulatory sequences

    Checkpoint effects and telomere amplification during DNA re-replication in fission yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although much is known about molecular mechanisms that prevent re-initiation of DNA replication on newly replicated DNA during a single cell cycle, knowledge is sparse regarding the regions that are most susceptible to re-replication when those mechanisms are bypassed and regarding the extents to which checkpoint pathways modulate re-replication. We used microarrays to learn more about these issues in wild-type and checkpoint-mutant cells of the fission yeast, <it>Schizosaccharomyces pombe</it>.</p> <p>Results</p> <p>We found that over-expressing a non-phosphorylatable form of the replication-initiation protein, Cdc18 (known as Cdc6 in other eukaryotes), drove re-replication of DNA sequences genome-wide, rather than forcing high level amplification of just a few sequences. Moderate variations in extents of re-replication generated regions spanning hundreds of kilobases that were amplified (or not) ~2-fold more (or less) than average. However, these regions showed little correlation with replication origins used during S phase. The extents and locations of amplified regions in cells deleted for the checkpoint genes encoding Rad3 (ortholog of human ATR and budding yeast Mec1) and Cds1 (ortholog of human Chk2 and budding yeast Rad53) were similar to those in wild-type cells. Relatively minor but distinct effects, including increased re-replication of heterochromatic regions, were found specifically in cells lacking Rad3. These might be due to Cds1-independent roles for Rad3 in regulating re-replication and/or due to the fact that cells lacking Rad3 continued to divide during re-replication, unlike wild-type cells or cells lacking Cds1. In both wild-type and checkpoint-mutant cells, regions near telomeres were particularly susceptible to re-replication. Highly re-replicated telomere-proximal regions (50ā€“100 kb) were, in each case, followed by some of the least re-replicated DNA in the genome.</p> <p>Conclusion</p> <p>The origins used, and the extent of replication fork progression, during re-replication are largely independent of the replication and DNA-damage checkpoint pathways mediated by Cds1 and Rad3. The fission yeast pattern of telomere-proximal amplification adjacent to a region of under-replication has also been seen in the distantly-related budding yeast, which suggests that subtelomeric sequences may be a promising place to look for DNA re-replication in other organisms.</p

    ISOLATION OF METAPHASE CHROMOSOMES FROM HELA CELLS

    Full text link

    Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei.</p> <p>Findings</p> <p>Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, <it>Schizosaccharomyces pombe</it>. To preserve <it>in vivo </it>molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates.</p> <p>Conclusions</p> <p>We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.</p

    Checkpoint independence of most DNA replication origins in fission yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, <it>Schizosaccharomyces pombe</it>, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of <it>rad3 </it>(which encodes the fission yeast homologue of ATR) or <it>cds1 </it>(which encodes the fission yeast homologue of Chk2).</p> <p>Results</p> <p>Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells.</p> <p>Conclusion</p> <p>The fact that ~97% of fission yeast replication origins ā€“ both early and late ā€“ are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.</p

    Chromatin architectures at fission yeast transcriptional promoters and replication origins

    Get PDF
    We have used micrococcal nuclease (MNase) digestion followed by deep sequencing in order to obtain a higher resolution map than previously available of nucleosome positions in the fission yeast, Schizosaccharomyces pombe. Our data confirm an unusually short average nucleosome repeat length, āˆ¼152ā€‰bp, in fission yeast and that transcriptional start sites (TSSs) are associated with nucleosome-depleted regions (NDRs), ordered nucleosome arrays downstream and less regularly spaced upstream nucleosomes. In addition, we found enrichments for associated function in four of eight groups of genes clustered according to chromatin configurations near TSSs. At replication origins, our data revealed asymmetric localization of pre-replication complex (pre-RC) proteins within large NDRsā€”a feature that is conserved in fission and budding yeast and is therefore likely to be conserved in other eukaryotic organisms
    • ā€¦
    corecore