458 research outputs found

    Black holes in Godel universes and pp-waves

    Full text link
    We find exact rotating and non-rotating neutral black hole solutions in the Godel universe of the five dimensional minimal supergravity theory. We also describe the embedding of this solution in M-theory. After dimensional reduction and T-duality, we obtain a supergravity solution corresponding to placing a black string in a pp-wave background.Comment: 9 pages, 1 figur

    The Gravity Dual of a Density Matrix

    Full text link
    For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the remaining degrees of freedom. In the context of the AdS/CFT correspondence, if the original state has a dual bulk spacetime with a good classical description, it is natural to ask how much information about the bulk spacetime is carried by the density matrix for such a subset of field theory degrees of freedom. In this note, we provide several constraints on the largest region that can be fully reconstructed, and discuss specific proposals for the geometric construction of this dual region.Comment: 19 pages, LaTeX, 8 figures, v2: footnote and reference adde

    Holographic models of de Sitter QFTs

    Full text link
    We describe the dynamics of strongly coupled field theories in de Sitter spacetime using the holographic gauge/gravity duality. The main motivation for this is to explore the possibility of dynamical phase transitions during cosmological evolution. Specifically, we study two classes of theories: (i) conformal field theories on de Sitter in the static patch which are maintained in equilibrium at temperatures that may differ from the de Sitter temperature and (ii) confining gauge theories on de Sitter spacetime. In the former case we show the such states make sense from the holographic viewpoint in that they have regular bulk gravity solutions. In the latter situation we add to the evidence for a confinement/deconfinement transition for a large N planar gauge theory as the cosmological acceleration is increased past a critical value. For the field theories we study, the critical acceleration corresponds to a de Sitter temperature which is less than the Minkowski space deconfinement transition temperature by a factor of the spacetime dimension.Comment: 35 pages, LaTeX, 4 figures, v2: refs adde

    Critical Dimension for Stable Self-gravitating Stars in AdS

    Full text link
    We study the self-gravitating stars with a linear equation of state, P=aρP=a \rho, in AdS space, where aa is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central energy density; below which there exists a maximal mass configuration for a certain central energy density and when the central energy density continues to increase, the configuration becomes unstable. We find that the critical dimension depends on the parameter aa, it runs from d=11.1429d=11.1429 to 10.1291 as aa varies from a=0a=0 to 1. The lowest integer dimension for a dynamically stable self-gravitating configuration should be d=12d=12 for any a[0,1]a \in [0,1] rather than d=11d=11, the latter is the case of self-gravitating radiation configurations in AdS space.Comment: Revtex, 11 pages with 7 eps figure

    Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime

    Full text link
    In this note, we consider confining gauge theories in D=2,3,4D=2,3,4 defined by S2S^2 or T2T^2 compactification of higher-dimensional conformal field theories with gravity duals. We investigate the behavior of these theories on de Sitter spacetime as a function of the Hubble parameter. We find that in each case, the de Sitter vacuum state of the field theory (defined by Euclidian continuation from a sphere) undergoes a deconfinement transition as the Hubble parameter is increased past a critical value. In each case, the corresponding critical de Sitter temperature is smaller than the corresponding Minkowski-space deconfinement temperature by a factor nearly equal to the dimension of the de Sitter spacetime. The behavior is qualitatively and quantitatively similar to that for confining theories defined by S1S^1 compactification of CFTs, studied recently in arXiv:1007.3996.Comment: 25 pages, 7 figure

    Holographic Entanglement Entropy at Finite Temperature

    Full text link
    Using a holographic proposal for the entanglement entropy we study its behavior in various supergravity backgrounds. We are particularly interested in the possibility of using the entanglement entropy as way to detect transitions induced by the presence horizons. We consider several geometries with horizons: the black hole in AdS3AdS_3, nonextremal Dp-branes, dyonic black holes asymptotically to AdS4AdS_4 and also Schwarzschild black holes in global AdSpAdS_p coordinates. Generically, we find that the entanglement entropy does not exhibit a transition, that is, one of the two possible configurations always dominates.Comment: v3: 31 pp, ten figures, modified to match version accepted by IJMP

    Polaris B, an optical companion of Polaris (alpha UMi) system: atmospheric parameters, chemical composition, distance and mass

    Full text link
    We present an analysis of high-resolution spectroscopic observations of Polaris B, the optical companion of the Polaris Ab system. The star has a radial velocity V_r of -16.6km/s to -18.9km/s, and a projected rotational velocity vsini=110 km/s. The derived atmospheric parameters are: Teff=6900K; logg=4.3; V_t=2.5km/s. Polaris B has elemental abundances generally similar to those of the Cepheid Polaris A (Usenko et al. 2005a), although carbon, sodium and magnesium are close to the solar values. At a spectral type of F3V Polaris B has a luminosity of 3.868L_sun, an absolute magnitude of +3.30mag, and a distance of 109.5pc. The mass of the star is estimated to be 1.39M_sun, close to a mass of 1.38+/-0.61M_sun for the recently-resolved orbital periods companion Polaris Ab observed by Evans et al. (2007).Comment: 6 pages, 3 figures, 1 tabl

    A critical dimension for the stability of perfect fluid spheres of radiation

    Full text link
    An analysis of radiating perfect fluid models with asymptotically AdS boundary conditions is presented. Such scenarios consist of a spherical gas of radiation (a "star") localised near the centre of the spacetime due to the confining nature of the AdS potential. We consider the variation of the total mass of the star as a function of the central density, and observe that for large enough dimensionality, the mass increases monotonically with the density. However in the lower dimensional cases, oscillations appear, indicating that the perfect fluid model of the star is becoming unrealistic. We find the critical dimension separating these two regimes to be eleven.Comment: 18 pages, 5 figures; v2 reference and footnote added; v3 slight reordering of content, new section added with further analysis; v4 Final version - small changes, including a new title, accepted for publication in CQ

    Thermodynamics of Large AdS Black Holes

    Full text link
    We consider leading order quantum corrections to the geometry of large AdS black holes in a spherical reduction of four-dimensional Einstein gravity with negative cosmological constant. The Hawking temperature grows without bound with increasing black hole mass, yet the semiclassical back-reaction on the geometry is relatively mild, indicating that observers in free fall outside a large AdS black hole never see thermal radiation at the Hawking temperature. The positive specific heat of large AdS black holes is a statement about the dual gauge theory rather than an observable property on the gravity side. Implications for string thermodynamics with an AdS infrared regulator are briefly discussed.Comment: 17 pages, 1 figure, v2. added reference
    corecore