740 research outputs found
IRIS: A Generic Three-Dimensional Radiative Transfer Code
We present IRIS, a new generic three-dimensional (3D) spectral radiative
transfer code that generates synthetic spectra, or images. It can be used as a
diagnostic tool for comparison with astrophysical observations or laboratory
astrophysics experiments. We have developed a 3D short-characteristic solver
that works with a 3D nonuniform Cartesian grid. We have implemented a piecewise
cubic, locally monotonic, interpolation technique that dramatically reduces the
numerical diffusion effect. The code takes into account the velocity gradient
effect resulting in gradual Doppler shifts of photon frequencies and subsequent
alterations of spectral line profiles. It can also handle periodic boundary
conditions. This first version of the code assumes Local Thermodynamic
Equilibrium (LTE) and no scattering. The opacities and source functions are
specified by the user. In the near future, the capabilities of IRIS will be
extended to allow for non-LTE and scattering modeling. IRIS has been validated
through a number of tests. We provide the results for the most relevant ones,
in particular a searchlight beam test, a comparison with a 1D plane-parallel
model, and a test of the velocity gradient effect. IRIS is a generic code to
address a wide variety of astrophysical issues applied to different objects or
structures, such as accretion shocks, jets in young stellar objects, stellar
atmospheres, exoplanet atmospheres, accretion disks, rotating stellar winds,
cosmological structures. It can also be applied to model laboratory
astrophysics experiments, such as radiative shocks produced with high power
lasers.Comment: accepted for publication in A&A; 17 pages, 9 figures, 2 table
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks
We have constructed a grid of non-LTE disk models for a wide range of black
hole mass and mass accretion rate, for several values of viscosity parameter
alpha, and for two extreme values of the black hole spin: the maximum-rotation
Kerr black hole, and the Schwarzschild (non-rotating) black hole. Our procedure
calculates self-consistently the vertical structure of all disk annuli together
with the radiation field, without any approximations imposed on the optical
thickness of the disk, and without any ad hoc approximations to the behavior of
the radiation intensity. The total spectrum of a disk is computed by summing
the spectra of the individual annuli, taking into account the general
relativistic transfer function. The grid covers nine values of the black hole
mass between M = 1/8 and 32 billion solar masses with a two-fold increase of
mass for each subsequent value; and eleven values of the mass accretion rate,
each a power of 2 times 1 solar mass/year. The highest value of the accretion
rate corresponds to 0.3 Eddington. We show the vertical structure of individual
annuli within the set of accretion disk models, along with their local emergent
flux, and discuss the internal physical self-consistency of the models. We then
present the full disk-integrated spectra, and discuss a number of
observationally interesting properties of the models, such as
optical/ultraviolet colors, the behavior of the hydrogen Lyman limit region,
polarization, and number of ionizing photons. Our calculations are far from
definitive in terms of the input physics, but generally we find that our models
exhibit rather red optical/UV colors. Flux discontinuities in the region of the
hydrogen Lyman limit are only present in cool, low luminosity models, while
hotter models exhibit blueshifted changes in spectral slope.Comment: 20 pages, 31 figures, ApJ in press, spectral models are available for
downloading at http://www.physics.ucsb.edu/~blaes/habk
Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies
We combine state-of-the-art models for the production of stellar radiation
and its transfer through the interstellar medium (ISM) to investigate
ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in
star-forming galaxies. We start by assessing the reliability of our stellar
population synthesis modelling by fitting absorption-line indices in the
ISM-free ultraviolet spectra of 10 Large-Magellanic-Cloud clusters. In doing
so, we find that neglecting stochastic sampling of the stellar initial mass
function in these young (-100 Myr), low-mass clusters affects
negligibly ultraviolet-based age and metallicity estimates but can lead to
significant overestimates of stellar mass. Then, we proceed and develop a
simple approach, based on an idealized description of the main features of the
ISM, to compute in a physically consistent way the combined influence of
nebular emission and interstellar absorption on ultraviolet spectra of
star-forming galaxies. Our model accounts for the transfer of radiation through
the ionized interiors and outer neutral envelopes of short-lived stellar birth
clouds, as well as for radiative transfer through a diffuse intercloud medium.
We use this approach to explore the entangled signatures of stars, the ionized
and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find
that, aside from a few notable exceptions, most standard ultraviolet indices
defined in the spectra of ISM-free stellar populations are prone to significant
contamination by the ISM, which increases with metallicity. We also identify
several nebular-emission and interstellar-absorption features, which stand out
as particularly clean tracers of the different phases of the ISM.Comment: 27 pages, 21 figures. Accepted for publication in MNRA
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei
We present self-consistent models of the vertical structure and emergent
spectrum of AGN accretion disks. The central object is assumed to be a
supermassive Kerr black hole. We demonstrate that NLTE effects and the effects
of a self-consistent vertical structure of a disk play a very important role in
determining the emergent radiation, and therefore should be taken into account.
In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity
when compared to LTE models, and the He II discontinuity appears strongly in
emission for NLTE models. Consequently, the number of ionizing photons in the
He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of
magnitude higher than that following from the black-body approximation. This
prediction has important implications for ionization models of AGN broad line
regions, and for models of the intergalactic radiation field and the ionization
of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the
Astrophysical Journal (Letters
Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b
We calculate the planet-star flux-density ratios as a function of wavelength
from 0.5 microns to 25 microns for the transiting extrasolar giant planets
TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS
secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three
data points and generic calibration issues, detailed conclusions are difficult,
but inferences regarding atmospheric composition, temperature, and global
circulation can be made. Our models reproduce the observations reasonably well,
but not perfectly, and we speculate on the theoretical consequences of
variations around our baseline models. One preliminary conclusion is that we
may be seeing in the data indications that the day side of a close-in
extrasolar giant planet is brighter in the mid-infrared than its night side,
unlike Jupiter and Saturn. This correspondence will be further tested when the
data anticipated in other Spitzer bands are acquired, and we make predictions
for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical
Journa
Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets
We have created a general methodology for calculating the
wavelength-dependent light curves of close-in extrasolar giant planets (EGPs)
as they traverse their orbits. Focussing on the transiting EGPs HD189733b,
TrES-1, and HD209458b, we calculate planet/star flux ratios during secondary
eclipse and compare them with the Spitzer data points obtained so far in the
mid-infrared. We introduce a simple parametrization for the redistribution of
heat to the planet's nightside, derive constraints on this parameter (P_n), and
provide a general set of predictions for planet/star contrast ratios as a
function of wavelength, model, and phase. Moreover, we calculate average
dayside and nightside atmospheric temperature/pressure profiles for each
transiting planet/P_n pair with which existing and anticipated Spitzer data can
be used to probe the atmospheric thermal structure of severely irradiated EGPs.
We find that the baseline models do a good job of fitting the current secondary
eclipse dataset, but that the Spitzer error bars are not yet small enough to
discriminate cleanly between all the various possibilities.Comment: 14 figures, 7 text pages (in two-column emulateapj format); Accepted
to the Ap.J. June 26, 2006; one cosmetic change made to astro-ph version
A Grid of Relativistic, non-LTE Accretion Disk Models for Spectral Fitting of Black Hole Binaries
Self-consistent vertical structure models together with non-LTE radiative
transfer should produce spectra from accretion disks around black holes which
differ from multitemperature blackbodies at levels which may be observed. High
resolution, high signal-to-noise observations warrant spectral modeling which
both accounts for relativistic effects, and treats the physics of radiative
transfer in detail. In Davis et al. (2005) we presented spectral models which
accounted for non-LTE effects, Compton scattering, and the opacities due to
ions of abundant metals. Using a modification of this method, we have tabulated
spectra for black hole masses typical of Galactic binaries. We make them
publicly available for spectral fitting as an Xspec model. These models
represent the most complete realization of standard accretion disk theory to
date. Thus, they are well suited for both testing the theory's applicability to
observed systems and for constraining properties of the black holes, including
their spins.Comment: 7 pages, emulate ApJ, accepted to Ap
Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data
We present theoretical atmosphere, spectral, and light-curve models for
extrasolar giant planets (EGPs) undergoing strong irradiation for which {\it
Spitzer} planet/star contrast ratios or light curves have been published (circa
June 2007). These include HD 209458b, HD 189733b, TrES-1, HD 149026b, HD
179949b, and And b. By comparing models with data, we find that a
number of EGP atmospheres experience thermal inversions and have stratospheres.
This is particularly true for HD 209458b, HD 149026b, and And b.
This finding translates into qualitative changes in the planet/star contrast
ratios at secondary eclipse and in close-in EGP orbital light curves. Moreover,
the presence of atmospheric water in abundance is fully consistent with all the
{\it Spitzer} data for the measured planets. For planets with stratospheres,
water absorption features invert into emission features and mid-infrared fluxes
can be enhanced by a factor of two. In addition, the character of near-infrared
planetary spectra can be radically altered. We derive a correlation between the
importance of such stratospheres and the stellar flux on the planet, suggesting
that close-in EGPs bifurcate into two groups: those with and without
stratospheres. From the finding that TrES-1 shows no signs of a stratosphere,
while HD 209458b does, we estimate the magnitude of this stellar flux
breakpoint. We find that the heat redistribution parameter, P, for the
family of close-in EGPs assumes values from 0.1 to 0.4. This paper
provides a broad theoretical context for the future direct characterization of
EGPs in tight orbits around their illuminating stars.Comment: Accepted to Ap. J., provided here in emulateapj format: 28 pages, 8
figures, many with multiple panel
- …