18 research outputs found

    Research Progress on Structure, Function and Application of Tremella fuciformis Polysaccharide

    Get PDF
    Tremella fuciformis is rich in nutrients, and Tremella fuciformis polysaccharide is the most important functional active component with a variety of biological activities. Tremella fuciformis polysaccharides can be prepared by various methods, and the research on its structure is mainly focused on molecular weight, monosaccharide components, and glycosidic bond type. This review summarizes the preparation, structure, and biological activities of Tremella fuciformis polysaccharides, such as antioxidant, anti-tumor, immune regulation, memory improvement, anti-inflammation, blood sugar and blood lipid lowering, and its development and application in food, cosmetics, and medicine. In the future, it is necessary to optimize the preparation technology of Tremella fuciformis polysaccharides, analyze the advanced structure of Tremella fuciformis polysaccharides with modern analytical techniques, and conduct in-depth research on the function and mechanism of action of Tremella fuciformis polysaccharides, so as to provide theoretical reference for the deep processing and product development of Tremella fuciformis fuciformis

    Spontaneous rotational symmetry breaking in KTaO3_3 interface superconductors

    Full text link
    Strongly correlated electrons could display intriguing spontaneous broken symmetries in the ground state. Understanding these symmetry breaking states is fundamental to elucidate the various exotic quantum phases in condensed matter physics. Here, we report an experimental observation of spontaneous rotational symmetry breaking of the superconductivity at the interface of YAlO3_3/KTaO3_3 (111) with a superconducting transition temperature of 1.86 K. Both the magnetoresistance and upper critical field in an in-plane field manifest striking twofold symmetric oscillations deep inside the superconducting state, whereas the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute this behavior to the mixed-parity superconducting state, which is an admixture of ss-wave and pp-wave pairing components induced by strong spin-orbit coupling. Our work demonstrates an unconventional nature of the pairing interaction in the KTaO3_3 interface superconductor, and provides a new platform to clarify a delicate interplay of electron correlation and spin-orbit coupling.Comment: 7 pages, 4 figure

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Role of liver FGF21-KLB signaling in ketogenic diet-induced amelioration of hepatic steatosis

    No full text
    Abstract Background The effectiveness of ketogenic diet (KD) in ameliorating fatty liver has been established, although its mechanism is under investigation. Fibroblast growth factor 21 (FGF21) positively regulates obesity-associated metabolic disorders and is elevated by KD. FGF21 conventionally initiates its intracellular signaling via receptor β-klotho (KLB). However, the mechanistic role of FGF21-KLB signaling for KD-ameliorated fatty liver remains unknown. This study aimed to delineate the critical role of FGF21 signaling in the ameliorative effects of KD on hepatic steatosis. Methods Eight-week-old C57BL/6 J mice were fed a chow diet (CD), a high-fat diet (HFD), or a KD for 16 weeks. Adeno-associated virus-mediated liver-specific KLB knockdown mice and control mice were fed a KD for 16 weeks. Phenotypic assessments were conducted during and after the intervention. We investigated the mechanism underlying KD-alleviated hepatic steatosis using multi-omics and validated the expression of key genes. Results KD improved hepatic steatosis by upregulating fatty acid oxidation and downregulating lipogenesis. Transcriptional analysis revealed that KD dramatically activated FGF21 pathway, including KLB and fibroblast growth factor receptor 1 (FGFR1). Impairing liver FGF21 signaling via KLB knockdown diminished the beneficial effects of KD on ameliorating fatty liver, insulin resistance, and regulating lipid metabolism. Conclusion KD demonstrates beneficial effects on diet-induced metabolic disorders, particularly on hepatic steatosis. Liver FGF21-KLB signaling plays a critical role in the KD-induced amelioration of hepatic steatosis

    Combinational Reasoning of Quantitative Fuzzy Topological Relations for Simple Fuzzy Regions

    No full text
    <div><p>In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models.</p></div

    (a) Fuzzy point for given <i>α</i>; (b) Fuzzy line segment for given <i>β</i>; (c) Fuzzy region for given <i>γ</i> [28].

    No full text
    <p>(a) Fuzzy point for given <i>α</i>; (b) Fuzzy line segment for given <i>β</i>; (c) Fuzzy region for given <i>γ</i> [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0117379#pone.0117379.ref028" target="_blank">28</a>].</p

    Two different topological relations between <i>A1</i> and <i>A2</i>.

    No full text
    <p>Two different topological relations between <i>A1</i> and <i>A2</i>.</p

    The eight basic topological relations between two simple crisp regions [36]

    No full text
    <p>The eight basic topological relations between two simple crisp regions [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0117379#pone.0117379.ref036" target="_blank">36</a>]</p

    (a) Fuzzy region <i>A1</i> for given <i>α</i>; (b) Fuzzy region <i>A2</i> for given <i>β</i>.

    No full text
    <p>(a) Fuzzy region <i>A1</i> for given <i>α</i>; (b) Fuzzy region <i>A2</i> for given <i>β</i>.</p

    (a) The inner-outer boundary of simple fuzzy line segment <i>L</i> for given <i>α</i>; (b) the inner-outer boundary of simple fuzzy region <i>A</i> for given <i>α</i>.

    No full text
    <p>(a) The inner-outer boundary of simple fuzzy line segment <i>L</i> for given <i>α</i>; (b) the inner-outer boundary of simple fuzzy region <i>A</i> for given <i>α</i>.</p
    corecore