21 research outputs found

    Core-sheath nanofibers as drug delivery system for thermoresponsive controlled release

    Get PDF
    In this work, a smart drug delivery system of core–sheath nanofiber is reported. The core-sheath nanofibers were prepared with thermoresponsive poly-(N-isopropylacrylamide) (PNIPAAm) (as core) and hydrophobic ethylcellulose (EC) (as sheath) by coaxial electrospinning. Analogous medicated fibers were prepared by loading with a model drug ketoprofen (KET). The fibers were cylindrical without phase separation and have visible core-sheath structure as shown by scanning and transmission electron microscopy. X-ray diffraction patterns demonstrated the drug with the amorphous physical form was present in the fiber matrix. Fourier transform infrared spectroscopy analysis was conducted, finding that there were significant intermolecular interactions between KET and the polymers. Water contact angle measurements proved that the core-sheath fibers from hydrophobic transformed into hydrophobic when the temperature reached the lower critical solution temperature. In vitro drug-release study of nanofibers with KET displayed that the coaxial nanofibers were able to synergistically combine the characteristics of the two polymers producing a temperature-sensitive drug delivery system with sustained release properties. In addition, they were established to be non-toxic and suitable for cell growth. These findings show that the core–sheath nanofiber is a potential candidate for controlling drug delivery system

    >

    No full text

    >

    No full text

    Monitoring AerosolPollutant Layer by Lidar Combined with some other Instruments

    No full text
    Lidar is a powerful tool for monitoring vertical profile of aerosol pollutant layer (APL) and its variation. The extinction-to-backscatter ratio, S1, is a crucial parameter for quantitative interpretation of lidar data. Because of the large and quick variation of S1 in APL, it is necessary to measure real-timely S1. A multi-instrument method is introduced for monitoring APL by lidar combined with some other instruments. Some experiments were completed for monitoring APL variation at Beijing, China in several periods during 2001-2004. The statistic of APL can be analyzed upon the data of aerosol profile, such as APL top-height, the total mass of aerosol loading in APL

    >

    No full text

    Direct synthesis and structural characteristics of ordered SBA-15 mesoporous silica containing tungsten oxides and tungsten carbides

    No full text
    A series Of WO3-SBA-15 materials with different Si/W ratios have been hydrothermally synthesized using tetraethyl orthosilicate (TEOS) as silica precursor, ammonium paratungstate as tungsten precursor, and EO20PO70EO20 (P] 23) as structure-directing reagent. After temperature-programmed carburization (TPC) in flowing CH4/H-2 (20/80 v/v mixture), the materials were converted to the corresponding WxC-SBA- 15 materials. The structure of the oxide and carbide materials has been characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), nitrogen adsorption -desorption measurements, Si-29 magic-angle spinning (MAS) NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric and differential scanning calorimetric analysis (TG-DSC) measurements. The results show that after hydrothermal synthesis using different amounts of tungsten and subsequent carburization, the materials retain the mesopore structure of SBA- 15. When Si/W = 30-15, the majority of the tungsten is dispersed in the channels of SBA-15 with the remainder being incorporated into the framework of SBA-15 with the formation of Si-O-W bonds. The tungsten carbide exists as a single W2C phase after carburization. At higher tungsten content (Si/W = 7.5), the amount of tungsten in the framework of SBA-15 increases with the formation of both Si-O-W bonds and W-O-W bonds. The tungsten carbide formed after carburization exists as a mixture Of W2C and WC phases. A model for the distribution of tungsten in SBA-15 is proposed involving three different tungsten species: alpha-W inside SBA-15 channels, beta-W embedded in the internal surfaces of the SBA- 15 channels, and gamma-W inside the framework of SBA- 15. After temperature-programmed carburization, alpha-W sites are transformed into W2C, whereas beta-W sites afford WC; in contrast, gamma-W sites show little change after carburization.A series Of WO3-SBA-15 materials with different Si/W ratios have been hydrothermally synthesized using tetraethyl orthosilicate (TEOS) as silica precursor, ammonium paratungstate as tungsten precursor, and EO20PO70EO20 (P] 23) as structure-directing reagent. After temperature-programmed carburization (TPC) in flowing CH4/H-2 (20/80 v/v mixture), the materials were converted to the corresponding WxC-SBA- 15 materials. The structure of the oxide and carbide materials has been characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), nitrogen adsorption -desorption measurements, Si-29 magic-angle spinning (MAS) NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric and differential scanning calorimetric analysis (TG-DSC) measurements. The results show that after hydrothermal synthesis using different amounts of tungsten and subsequent carburization, the materials retain the mesopore structure of SBA- 15. When Si/W = 30-15, the majority of the tungsten is dispersed in the channels of SBA-15 with the remainder being incorporated into the framework of SBA-15 with the formation of Si-O-W bonds. The tungsten carbide exists as a single W2C phase after carburization. At higher tungsten content (Si/W = 7.5), the amount of tungsten in the framework of SBA-15 increases with the formation of both Si-O-W bonds and W-O-W bonds. The tungsten carbide formed after carburization exists as a mixture Of W2C and WC phases. A model for the distribution of tungsten in SBA-15 is proposed involving three different tungsten species: alpha-W inside SBA-15 channels, beta-W embedded in the internal surfaces of the SBA- 15 channels, and gamma-W inside the framework of SBA- 15. After temperature-programmed carburization, alpha-W sites are transformed into W2C, whereas beta-W sites afford WC; in contrast, gamma-W sites show little change after carburization

    >

    No full text

    >

    No full text

    >

    No full text

    >

    No full text
    corecore