15 research outputs found
DNA cytosine deamination is associated with recurrent Somatic Copy Number Alterations in stomach adenocarcinoma
Stomach Adenocarcinoma (STAD) is a leading cause of death worldwide. Somatic Copy Number Alterations (SCNAs), which result in Homologous recombination (HR) deficiency in double-strand break repair, are associated with the progression of STAD. However, the landscape of frequent breakpoints of SCNAs (hotspots) and their functional impacts remain poorly understood. In this study, we aimed to explore the frequency and impact of these hotspots in 332 STAD patients and 1,043 cancer cells using data from the Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE). We studied the rates of DSB (Double-Strand Breaks) loci in STAD patients by employing the Non-Homogeneous Poisson Distribution (λ), based on which we identified 145 DSB-hotspots with genes affected. We further verified DNA cytosine deamination as a critical process underlying the burden of DSB in STAD. Finally, we illustrated the clinical impact of the significant biological processes. Our findings highlighted the relationship between DNA cytosine deamination and SCNA in cancer was associated with recurrent Somatic Copy Number Alterations in STAD
Investigation of CYP1B1 mutations in Chinese patients with primary congenital glaucoma
Purpose: This study was conducted to investigate the mutation spectrum of the cytochrome P450 gene (CYP1B1) in Chinese patients with primary congenital glaucoma (PCG). Methods: The coding regions of CYP1B1 from 41 Chinese PCG patients were analyzed using polymerase chain reaction (PCR) and heteroduplex analysis-single strand conformation polymorphism (HA-SSCP) followed by subsequent cloning and bidirectional sequencing. New variants were confirmed by restriction fragment length polymorphism (RFLP) analysis in 80 normal Chinese controls. Results: Six distinct mutations, four of which are novel, were identified in 14.6 % (6/41) of all patients. The CYP1B1 mutations in two patients were homozygous, and the other four patients were compound heterozygous. Beyond the four novel mutations (g.4531_4552del22bp, g.4633delC, p.S336Y, and p.I471S), two reported missense mutations (R469W and R390H) were also identified. The missense mutation, R390H, was involved in 9.8 % (4/41) of patients in our study. None of the novel mutations was observed in any of the 80 controls. Conclusions: Our results support the premise that CYP1B1 is a major gene for PCG, appearing to be responsible for the disease in roughly one in six Chinese PCG patients. The R390H mutation was identified as a predominant CYP1B1 allele among the Chinese PCG patients in our study. This observation emphasizes the importance of mutational screening of CYP1B1, especially for the R390H mutation in Chinese patients
Multifunctional Interleukin-24 Resolves Neuroretina Autoimmunity via Diverse Mechanisms
IL-24 is a multifunctional cytokine that regulates both immune cells and epithelial cells. Although its elevation is associated with a number of autoimmune diseases, its tolerogenic properties against autoreactive T cells have recently been revealed in an animal model of central nervous system (CNS) autoimmunity by inhibiting the pathogenic Th17 response. To explore the potential of IL-24 as a therapeutic agent in CNS autoimmunity, we induced experimental autoimmune uveitis (EAU) in wildtype mice and intravitreally injected IL-24 into the inflamed eye after disease onset. We found that the progression of ocular inflammation was significantly inhibited in the IL-24-treated eye when compared to the control eye. More importantly, IL-24 treatment suppressed cytokine production from ocular-infiltrating, pathogenic Th1 and Th17 cells. In vitro experiments confirmed that IL-24 suppressed both Th1 and Th17 differentiation by regulating their master transcription factors T-bet and RORγt, respectively. In addition, we found that intravitreal injection of IL-24 suppressed the production of proinflammatory cytokines and chemokines from the retinas of the EAU-inflamed eyes. This observation appears to be applicable in humans, as IL-24 similarly inhibits human retinal pigment epithelium cells ARPE-19. In conclusion, we report here that IL-24, as a multifunctional cytokine, is capable of resolving ocular inflammation in EAU mice by targeting both uveitogenic T cells and RPE cells. This study sheds new light on IL-24 as a potential therapeutic candidate for autoimmune uveitis
The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis
The MAML (mastermind-like) proteins are a family of three cotranscriptional regulators that are essential for Notch signaling, a pathway critical for cell fate determination. Though the functions of MAML proteins in normal development remain unresolved, their distinct tissue distributions and differential activities in cooperating with various Notch receptors suggest that they have unique roles. Here we show that mice with a targeted disruption of the Maml1 gene have severe muscular dystrophy. In vitro, Maml1-null embryonic fibroblasts failed to undergo MyoD-induced myogenic differentiation, further suggesting that Maml1 is required for muscle development. Interestingly, overexpression of MAML1 in C2C12 cells dramatically enhanced myotube formation and increased the expression of muscle-specific genes, while RNA interference (RNAi)-mediated MAML1 knockdown abrogated differentiation. Moreover, we determined that MAML1 interacts with MEF2C (myocyte enhancer factor 2C), functioning as its potent cotranscriptional regulator. Surprisingly, however, MAML1’s promyogenic effects were completely blocked upon activation of Notch signaling, which was associated with recruitment of MAML1 away from MEF2C to the Notch transcriptional complex. Our study thus reveals novel and nonredundant functions for MAML1: It acts as a coactivator for MEF2C transcription and is essential for proper muscle development. Mechanistically, MAML1 appears to mediate cross-talk between Notch and MEF2 to influence myogenic differentiation
Inhibition of Notch Signaling Blocks Growth of Glioblastoma Cell Lines and Tumor Neurospheres
Glioblastoma (GBM) is the most common malignant brain tumor that is characterized by high proliferative rate and invasiveness. Since dysregulation of Notch signaling is implicated in the pathogenesis of many human cancers, here we investigated the role of Notch signaling in GBM. We found that there is aberrant activation of Notch signaling in GBM cell lines and human GBM-derived neurospheres. Inhibition of Notch signaling via the expression of a dominant negative form of the Notch coactivator, mastermind-like 1 (DN-MAML1), or the treatment of a γ-secretase inhibitor, (GSI) MRK-003, resulted in a significant reduction in GBM cell growth in vitro and in vivo. Knockdown of individual Notch receptors revealed that Notch1 and Notch2 receptors differentially contributed to GBM cell growth, with Notch2 having a predominant role. Furthermore, blockade of Notch signaling inhibited the proliferation of human GBM-derived neurospheres in vitro and in vivo. Our overall data indicate that Notch signaling contributes significantly to optimal GBM growth, strongly supporting that the Notch pathway is a promising therapeutic target for GBM
PTEN Reduced UVB-Mediated Apoptosis in Retinal Pigment Epithelium Cells
Age-related macular degeneration (AMD) is a leading cause of blindness and progressive loss of central vision in the elderly population. The important factor of AMD pathogenesis is the degeneration of retinal pigment epithelial (RPE) cells by oxidative stress. Inactivation of PTEN can disrupt intercellular adhesion in the RPE cells, but the mechanism of oxidative stress is less known. Here we presented evidence that UVB-mediated oxidative stress induced apoptosis in ARPE-19 cells. Downregulation of the expression of PTEN in UVB-irradiative RPE cells triggered DNA damage and increased the level of UVB-induced apoptosis by activating p53-dependent pathway. However, overexpression of PTEN increased cell survival by suppressing p-H2A in response to DNA damage and apoptosis. When using Pifithrin-α (one of p53 inhibitors), the level of p53-dependent apoptosis was significantly lower than untreated, which suggested that p53 was possibly involved in PTEN-dependent apoptosis. Thus, it elucidated the molecular mechanisms of UVB-induced damage in RPE cells and may offer an alternative therapeutic target in dry AMD
Curcumin Inhibits Proliferation and Epithelial-Mesenchymal Transition in Lens Epithelial Cells through Multiple Pathways
Background. Posterior capsule opacification (PCO), a complication of extracapsular lens extraction surgery that causes visual impairment, is characterized by aberrant proliferation and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Curcumin, exerting inhibitive effects on cell proliferation and EMT in cancer, serves as a possible antidote towards PCO. Methods. Cellular proliferation of LECs after treatment of curcumin was measured with MTT assay and flow cytometry. The transcriptional and expressional levels of proteins related to proliferation and EMT of LECs were quantified by western blotting and real-time PCR. Results. Curcumin was found to suppress the proliferation of LECs by inducing G2/M arrest via possible inhibition of cell cycle-related proteins including CDK1, cyclin B1, and CDC25C. It had also inactivated proliferation pathways involving ERK1/2 and Akt pathways in LECs. On the other hand, curcumin downregulated the EMT of LECs through blocking the TGF-β/Smad pathway and interfering Notch pathway which play important roles in PCO. Conclusions. This study shows that curcumin could suppress the proliferation and EMT in LECs, and it might be a potential therapeutic protection against visual loss induced by PCO