3 research outputs found

    Construction of an M2 macrophage-related prognostic model in hepatocellular carcinoma

    Get PDF
    BackgroundM2 macrophages play a crucial role in promoting tumor angiogenesis and proliferation, as well as contributing to chemotherapy resistance and metastasis. However, their specific role in the tumor progression of hepatocellular carcinoma (HCC) and their impact on the clinical prognosis remain to be further elucidated.Materials and methodsM2 macrophage-related genes were screened using CIBERSORT and weighted gene co-expression network analysis (WGCNA), while subtype identification was performed using unsupervised clustering. Prognostic models were constructed using univariate analysis/least absolute shrinkage selector operator (LASSO) Cox regression. In addition, Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and mutation analysis were used for further analysis. The relationship between the risk score and tumor mutation burden (TMB), microsatellite instability (MSI), the efficacy of transcatheter arterial chemoembolization (TACE), immunotype, and the molecular subtypes were also investigated. Moreover, the potential role of the risk score was explored using the ESTIMATE and TIDE (tumor immune dysfunction and exclusion) algorithms and stemness indices, such as the mRNA expression-based stemness index (mRNAsi) and the DNA methylation-based index (mDNAsi). In addition, the R package “pRRophetic” was used to examine the correlation between the risk score and the chemotherapeutic response. Finally, the role of TMCC1 in HepG2 cells was investigated using various techniques, including Western blotting, RT-PCR and Transwell and wound healing assays.ResultsThis study identified 158 M2 macrophage-related genes enriched in small molecule catabolic processes and fatty acid metabolic processes in HCC. Two M2 macrophage-related subtypes were found and a four-gene prognostic model was developed, revealing a positive correlation between the risk score and advanced stage/grade. The high-risk group exhibited higher proliferation and invasion capacity, MSI, and degree of stemness. The risk score was identified as a promising prognostic marker for TACE response, and the high-risk subgroup showed higher sensitivity to chemotherapeutic drugs (e.g., sorafenib, doxorubicin, cisplatin, and mitomycin) and immune checkpoint inhibitor (ICI) treatments. The expression levels of four genes related to the macrophage-related risk score were investigated, with SLC2A2 and ECM2 showing low expression and SLC16A11 and TMCC1 exhibiting high expression in HCC. In vitro experiments showed that TMCC1 may enhance the migration ability of HepG2 cells by activating the Wnt signaling pathway.ConclusionWe identified 158 HCC-related M2 macrophage genes and constructed an M2 macrophage-related prognostic model. This study advances the understanding of the role of M2 macrophages in HCC and proposes new prognostic markers and therapeutic targets

    Tumor-Educated Platelet RNA and Circulating Free RNA: Emerging Liquid Biopsy Markers for Different Tumor Types

    No full text
    The incidence and mortality from malignant tumors continue to rise each year. Consequently, early diagnosis and intervention are vital for improving patient’ prognosis and survival. The traditional pathological tissue biopsy is currently considered the gold standard for cancer diagnosis. However, it suffers from several limitations including invasiveness, sometimes not repeatable or unsuitable, and the inability to capture the dynamic nature of tumors in terms of space and time. Consequently, these limit the application of tissue biopsies for the diagnosis of early-stage tumors and have redirected the research focus towards liquid biopsies. Blood-based liquid biopsies have thus emerged as a promising option for non-invasive assessment of tumor-specific biomarkers. These minimally invasive, easily accessible, and reproducible tests offer several advantages, such as being mostly complication-free and efficient at monitoring tumor progression and tracing drug resistance. Liquid biopsies show great potential for cancer prediction, diagnosis, and prognostic assessment. Circulating tumor-educated platelets (TEPs) possess the unique ability to absorb nucleic acids from the bloodstream and to modify transcripts derived from megakaryocytes in response to external signals. In addition, circulating free RNA (cfRNA) constitutes a significant portion of the biomolecules present in the bloodstream. This paper aims to provide a comprehensive overview of the current research status regarding TEP RNA and cfRNA in liquid biopsies from various tumor types. Our analysis includes cancers of the lung, liver, pancreas, breast, nasopharynx, ovary and colon, as well as multiple myeloma and sarcoma. By synthesizing this information, we intend to establish a solid theoretical foundation for exploring potential applications of circulating RNA as a reliable biomarker for tumor diagnosis and monitoring

    Characterization of LIMA1 and its emerging roles and potential therapeutic prospects in cancers

    Get PDF
    Actin is the most abundant and highly conserved cytoskeletal protein present in all eukaryotic cells. Remodeling of the actin cytoskeleton is controlled by a variety of actin-binding proteins that are extensively involved in biological processes such as cell motility and maintenance of cell shape. LIM domain and actin-binding protein 1 (LIMA1), as an important actin cytoskeletal regulator, was initially thought to be a tumor suppressor frequently downregulated in epithelial tumors. Importantly, the deficiency of LIMA1 may be responsible for dysregulated cytoskeletal dynamics, altered cell motility and disrupted cell-cell adhesion, which promote tumor proliferation, invasion and migration. As research progresses, the roles of LIMA1 extend from cytoskeletal dynamics and cell motility to cell division, gene regulation, apical extrusion, angiogenesis, cellular metabolism and lipid metabolism. However, the expression of LIMA1 in malignant tumors and its mechanism of action have not yet been elucidated, and many problems and challenges remain to be addressed. Therefore, this review systematically describes the structure and biological functions of LIMA1 and explores its expression and regulatory mechanism in malignant tumors, and further discusses its clinical value and therapeutic prospects
    corecore