8,288 research outputs found

    Efficient Coding Tree Unit (CTU) Decision Method for Scalable High-Efficiency Video Coding (SHVC) Encoder

    Get PDF
    High-efficiency video coding (HEVC or H.265) is the latest video compression standard developed by the joint collaborative team on video coding (JCT-VC), finalized in 2013. HEVC can achieve an average bit rate decrease of 50% in comparison with H.264/AVC while still maintaining video quality. To upgrade the HEVC used in heterogeneous access networks, the JVT-VC has been approved scalable extension of HEVC (SHVC) in July 2014. The SHVC can achieve the highest coding efficiency but requires a very high computational complexity such that its real-time application is limited. To reduce the encoding complexity of SHVC, in this chapter, we employ the temporal-spatial and inter-layer correlations between base layer (BL) and enhancement layer (EL) to predict the best quadtree of coding tree unit (CTU) for quality SHVC. Due to exist a high correlation between layers, we utilize the coded information from the CTU quadtree in BL, including inter-layer intra/residual prediction and inter-layer motion parameter prediction, to predict the CTU quadtree in EL. Therefore, we develop an efficient CTU decision method by combing temporal-spatial searching order algorithm (TSSOA) in BL and a fast inter-layer searching algorithm (FILSA) in EL to speed up the encoding process of SHVC. The simulation results show that the proposed efficient CTU decision method can achieve an average time improving ratio (TIR) about 52–78% and 47–69% for low delay (LD) and random access (RA) configurations, respectively. It is clear that the proposed method can efficiently reduce the computational complexity of SHVC encoder with negligible loss of coding efficiency with various types of video sequences
    • …
    corecore