67,690 research outputs found

    Measurement of XeI and XeII velocity in the near exit plane of a low-power Hall effect thruster by light induced fluorescence spectroscopy

    Full text link
    Near exit plane non-resonant light induced fluorescence spectroscopy is performed in a Hall effect low-power Xenon thruster at discharge voltage of 250V and anode flow rate of 0.7mg/sec. Measurement of the axial and radial velocity components are performed, exciting the 6s[3/2]_2-->6p[3/2]_2 transition at 823.16nm in XeI and the 5d[4]_(7/2)-->6p[3]_(5/2) transition at 834.724nm in XeII. No significant deviation from the thermal velocity is observed for XeI. Two most probable ion velocities are registered at a given position with respect to the thruster axis, which are mainly attributed to different areas of creation of ions inside the acceleration channel. The spatial resolution of the set-up is limited by the laser beam size (radius of the order of 0.5mm) and the fluorescence collection optics, which have a view spot diameter of 8mm.Comment: 6 pages, 8 figure

    Electrostatic tuning of magnetism at the conducting (111) (La0.3_{0.3}Sr0.7_{0.7})(Al0.65_{0.65}Ta0.35_{0.35})/SrTiO3_3 interface

    Full text link
    We present measurements of the low temperature electrical transport properties of the two dimensional carrier gas that forms at the interface of (111)(111) (La0.3_{0.3}Sr0.7_{0.7})(Al0.65_{0.65}Ta0.35_{0.35})/SrTiO3_3 (LSAT/STO) as a function of applied back gate voltage, VgV_g. As is found in (111) LaAlO3_3/SrTiO3_3 interfaces, the low-field Hall coefficient is electron-like, but shows a sharp reduction in magnitude below VgV_g \sim 20 V, indicating the presence of hole-like carriers in the system. This same value of VgV_g correlates approximately with the gate voltage below which the magnetoresistance evolves from nonhysteretic to hysteretic behavior at millikelvin temperatures, signaling the onset of magnetic order in the system. We believe our results can provide insight into the mechanism of magnetism in SrTiO3_3 based systems.Comment: 5 pages, 3 figure

    Evidence of Counter-Streaming Ions near the Inner Pole of the HERMeS Hall Thruster

    Get PDF
    NASA is continuing the development of a 12.5-kW Hall thruster system to support a phased exploration concept to expand human presence to cis-lunar space and eventually to Mars. The development team is transitioning knowledge gained from the testing of the government-built Technology Development Unit (TDU) to the contractor-built Engineering Test Unit (ETU). A new laser-induced fluorescence diagnostic was developed to obtain data for validating the Hall thruster models and for comparing the behavior of the ETU and TDU. Analysis of TDU LIF data obtained during initial deployment of the diagnostics revealed evidence of two streams of ions moving in opposite directions near the inner front pole. These two streams of ions were found to intersect the downstream surface of the front pole at large oblique angles. This data points to a possible explanation for why the erosion rate of polished pole covers were observed to decrease over the course of several hundred hours of thruster operation

    Geo-neutrinos and Earth Models

    Get PDF
    We present the current status of geo-neutrino measurements and their implications for radiogenic heating in the mantle. Earth models predict different levels of radiogenic heating and, therefore, different geo-neutrino fluxes from the mantle. Seismic tomography reveals features in the deep mantle possibly correlated with radiogenic heating and causing spatial variations in the mantle geo-neutrino flux at the Earth surface. An ocean-based observatory offers the greatest sensitivity to the mantle flux and potential for resolving Earth models and mantle features. Refinements to estimates of the geo-neutrino flux from continental crust reduce uncertainty in measurements of the mantle flux, especially measurements from land-based observatories. These refinements enable the resolution of Earth models using the combined measurements from multiple continental observatories.Comment: 9 pages, 4 figures; Contributed paper TAUP 201

    Uncorrelated and correlated nanoscale lattice distortions in the paramagnetic phase of magnetoresistive manganites

    Full text link
    Neutron scattering measurements on a magnetoresistive manganite La0.75_{0.75}(Ca0.45_{0.45}Sr0.55_{0.55})0.25_{0.25}MnO3_3 show that uncorrelated dynamic polaronic lattice distortions are present in both the orthorhombic (O) and rhombohedral (R) paramagnetic phases. The uncorrelated distortions do not exhibit any significant anomaly at the O-to-R transition. Thus, both the paramagnetic phases are inhomogeneous on the nanometer scale, as confirmed further by strong damping of the acoustic phonons and by the anomalous Debye-Waller factors in these phases. In contrast, recent x-ray measurements and our neutron data show that polaronic correlations are present only in the O phase. In optimally doped manganites, the R phase is metallic, while the O paramagnetic state is insulating (or semiconducting). These measurements therefore strongly suggest that the {\it correlated} lattice distortions are primarily responsible for the insulating character of the paramagnetic state in magnetoresistive manganites.Comment: 10 pages, 8 figures embedde

    Fatigue of notched fiber composite laminates. Part 1: Analytical model

    Get PDF
    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given

    Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distribution in Photoacoustic Computed Tomography: A numerical Investigation

    Get PDF
    Photoacoustic computed tomography (PACT) is a rapidly emerging bioimaging modality that seeks to reconstruct an estimate of the absorbed optical energy density within an object. Conventional PACT image reconstruction methods assume a constant speed-of-sound (SOS), which can result in image artifacts when acoustic aberrations are significant. It has been demonstrated that incorporating knowledge of an object's SOS distribution into a PACT image reconstruction method can improve image quality. However, in many cases, the SOS distribution cannot be accurately and/or conveniently estimated prior to the PACT experiment. Because variations in the SOS distribution induce aberrations in the measured photoacoustic wavefields, certain information regarding an object's SOS distribution is encoded in the PACT measurement data. Based on this observation, a joint reconstruction (JR) problem has been proposed in which the SOS distribution is concurrently estimated along with the sought-after absorbed optical energy density from the photoacoustic measurement data. A broad understanding of the extent to which the JR problem can be accurately and reliably solved has not been reported. In this work, a series of numerical experiments is described that elucidate some important properties of the JR problem that pertain to its practical feasibility. To accomplish this, an optimization-based formulation of the JR problem is developed that yields a non-linear iterative algorithm that alternatingly updates the two image estimates. Heuristic analytic insights into the reconstruction problem are also provided. These results confirm the ill-conditioned nature of the joint reconstruction problem that will present significant challenges for practical applications.Comment: 13 pages, submitted to IEEE Transactions on Computational Imagin
    corecore