145,306 research outputs found
Stochastic model of temporal changes of wind spectra in the free atmosphere
Data for wind profile spectra changes with respect to time from Cape Kennedy, Florida for the time period from 28 November 1964 to 11 May 1967 have been analyzed. A universal statistical distribution of the spectral change which encompasses all vertical wave numbers, wind speed categories, and elapsed time has been developed for the standard deviation of the time changes of detailed wind profile spectra as a function of wave number
Systematic study of the symmetry energy coefficient in finite nuclei
The symmetry energy coefficients in finite nuclei have been studied
systematically with a covariant density functional theory (DFT) and compared
with the values calculated using several available mass tables. Due to the
contamination of shell effect, the nuclear symmetry energy coefficients
extracted from the binding energies have large fluctuations around the nuclei
with double magic numbers. The size of this contamination is shown to be
smaller for the nuclei with larger isospin value. After subtracting the shell
effect with the Strutinsky method, the obtained nuclear symmetry energy
coefficients with different isospin values are shown to decrease smoothly with
the mass number and are subsequently fitted to the relation . The resultant volume and
surface coefficients from axially deformed covariant DFT calculations are
and MeV respectively. The ratio is in good
agreement with the value derived from the previous calculations with the
non-relativistic Skyrme energy functionals. The coefficients and
corresponding to several available mass tables are also extracted. It is shown
that there is a strong linear correlation between the volume and surface
coefficients and the ratios are in between for all
the cases.Comment: 16 pages, 6 figure
Recommended from our members
Behavior of axially loaded circular stainless steel tube confined concrete stub columns
A stainless steel tube confined concrete (SSTCC) stub column is a new form of steel-concrete composite column in which the stainless steel tube without bearing the axial load directly is used to confine the core concrete. It could take the advantages of both the stainless steel tube and the confined concrete columns. This paper presents the experimental investigation of circular SSTCC stub columns subjected to axial load. Meanwhile, comparative tests of the circular concrete-filled stainless steel tubes and circular hollow stainless steel tubes were also conducted. The experimental phenomena of specimens are introduced in detail and the experimental results are analyzed. Through the investigation of axial stress and circumference stress on the stainless steel tube, the interaction behavior between stainless steel tube and core concrete is studied. The experimental results showed that the stainless steel tube provides better confinement to the concrete core, thus results the compressive capacity increased obviously comparing with unconfined concrete. The load-carrying capacity of SSTCC stub columns is higher than that of concrete-filled stainless steel tubes. An equation to calculate the load-carrying capacity of SSTCC stub columns was proposed, the results based on calculation are close to the experimental results
Contactless electroreflectance, in the range of 20 K \u3c T \u3c 300 K, of freestanding wurtzite GaN prepared by hydride-vapor-phase epitaxy
We have performed a detailed contactless electroreflectance study of the interband excitonic transitions on both the Ga and N faces of a 200-μm-thick freestanding hydride-vapor-phase-epitaxy grown wurtzite GaN sample with low defect concentration in the temperature range between 20 and 300 K. The transition energies of the A, B, and C excitons and broadening parameters of the A and B excitons have been determined by least-square fits to the first derivative of a Lorentzian line shape. The energy positions and separations of the excitonic transitions in the sample reveal the existence of residual strain. At 20 K the broadening parameter of A exciton deduced for the Ga (5×105 dislocation cm−2) and N (1×107 dislocation cm−2) faces are 3 and 7 meV, respectively, indicating a lower defect concentration on the former face. The parameters that describe the temperature dependence of the interband transition energies of the A, B, and C excitons as well as the broadening function of the A and B features are evaluated. The results from an analysis of the temperature dependence of the broadening function of excitons A and B indicate that GaN exhibits a very large exciton-phonon coupling
- …