145,306 research outputs found

    Stochastic model of temporal changes of wind spectra in the free atmosphere

    Get PDF
    Data for wind profile spectra changes with respect to time from Cape Kennedy, Florida for the time period from 28 November 1964 to 11 May 1967 have been analyzed. A universal statistical distribution of the spectral change which encompasses all vertical wave numbers, wind speed categories, and elapsed time has been developed for the standard deviation of the time changes of detailed wind profile spectra as a function of wave number

    Systematic study of the symmetry energy coefficient in finite nuclei

    Full text link
    The symmetry energy coefficients in finite nuclei have been studied systematically with a covariant density functional theory (DFT) and compared with the values calculated using several available mass tables. Due to the contamination of shell effect, the nuclear symmetry energy coefficients extracted from the binding energies have large fluctuations around the nuclei with double magic numbers. The size of this contamination is shown to be smaller for the nuclei with larger isospin value. After subtracting the shell effect with the Strutinsky method, the obtained nuclear symmetry energy coefficients with different isospin values are shown to decrease smoothly with the mass number AA and are subsequently fitted to the relation 4asymA=bvAbsA4/3\dfrac{4a_{\rm sym}}{A}=\dfrac{b_v}{A}-\dfrac{b_s}{A^{4/3}}. The resultant volume bvb_v and surface bsb_s coefficients from axially deformed covariant DFT calculations are 121.73121.73 and 197.98197.98 MeV respectively. The ratio bs/bv=1.63b_s/b_v=1.63 is in good agreement with the value derived from the previous calculations with the non-relativistic Skyrme energy functionals. The coefficients bvb_v and bsb_s corresponding to several available mass tables are also extracted. It is shown that there is a strong linear correlation between the volume bvb_v and surface bsb_s coefficients and the ratios bs/bvb_s/b_v are in between 1.62.01.6-2.0 for all the cases.Comment: 16 pages, 6 figure

    Contactless electroreflectance, in the range of 20 K \u3c T \u3c 300 K, of freestanding wurtzite GaN prepared by hydride-vapor-phase epitaxy

    Get PDF
    We have performed a detailed contactless electroreflectance study of the interband excitonic transitions on both the Ga and N faces of a 200-μm-thick freestanding hydride-vapor-phase-epitaxy grown wurtzite GaN sample with low defect concentration in the temperature range between 20 and 300 K. The transition energies of the A, B, and C excitons and broadening parameters of the A and B excitons have been determined by least-square fits to the first derivative of a Lorentzian line shape. The energy positions and separations of the excitonic transitions in the sample reveal the existence of residual strain. At 20 K the broadening parameter of A exciton deduced for the Ga (5×105 dislocation cm−2) and N (1×107 dislocation cm−2) faces are 3 and 7 meV, respectively, indicating a lower defect concentration on the former face. The parameters that describe the temperature dependence of the interband transition energies of the A, B, and C excitons as well as the broadening function of the A and B features are evaluated. The results from an analysis of the temperature dependence of the broadening function of excitons A and B indicate that GaN exhibits a very large exciton-phonon coupling
    corecore