2,107 research outputs found

    Understanding changes in teacher beliefs and identity formation: A case study of three novice teachers in Hong Kong

    Get PDF
    Novice teachers often undergo an identity shift from learner to teacher. Along this process, their instructional beliefs change considerably which in turn affect their teacher identity formation. Drawing on data collected mainly through interviews with three novice English teachers formore than one year, the present study examines their firstyear teaching experience in Hong Kong secondary schools, focusing on changes of their English teaching beliefs and the impact of these changes on their identity construction. Findings reveal that while the teachers’ initial teaching beliefs were largely shaped in their prior school learning and learning-to-teach experience, these beliefs changed and were reshaped a great deal when encountering various contextual realities, and these changes further influenced their views on their teacher identity establishment, unfortunately in a more negative than positive direction. The study sheds light on the importance of institutional support in affording opportunities for novice teachers’ workplace learning and professional development

    Tuning the optoelectronic properties of emerging solar absorbers through cation disorder engineering

    Get PDF
    Chalcogenide solar absorbers, such as AgBiS2 and kesterites, have gained a resurgence of interest recently, owing to their high stability compared to metal–halide compounds, as well as their rising efficiencies in photovoltaic devices. Although their optical and electronic properties are conventionally tuned through the composition and structure, cation disorder has increased in prominence as another important parameter that influences these properties. In this minireview, we define cation disorder as the occupation of a cation crystallographic site with different species, and the homogeneity of this cation disorder as how regular the alternation of species in this site is. We show that cation disorder is not necessarily detrimental, and can lead to increases in absorption coefficient and reductions in bandgap, enabling the development of ultrathin solar absorbers for lightweight photovoltaics. Focusing on kesterites and ABZ2 materials (where A = monovalent cation, B = divalent cation, and Z is a chalcogenide anion), we discuss how the degree and homogeneity of cation disorder influences the optical properties, charge-carrier transport and photovoltaic performance of these materials, as well as how cation disorder could be tuned and quantified. We finish with our perspectives on the important questions moving forward in making use of cation disorder engineering as a route to achieve more efficient solar absorbers

    k-Same-Siamese-GAN: k-Same Algorithm with Generative Adversarial Network for Facial Image De-identification with Hyperparameter Tuning and Mixed Precision Training

    Full text link
    For a data holder, such as a hospital or a government entity, who has a privately held collection of personal data, in which the revealing and/or processing of the personal identifiable data is restricted and prohibited by law. Then, "how can we ensure the data holder does conceal the identity of each individual in the imagery of personal data while still preserving certain useful aspects of the data after de-identification?" becomes a challenge issue. In this work, we propose an approach towards high-resolution facial image de-identification, called k-Same-Siamese-GAN, which leverages the k-Same-Anonymity mechanism, the Generative Adversarial Network, and the hyperparameter tuning methods. Moreover, to speed up model training and reduce memory consumption, the mixed precision training technique is also applied to make kSS-GAN provide guarantees regarding privacy protection on close-form identities and be trained much more efficiently as well. Finally, to validate its applicability, the proposed work has been applied to actual datasets - RafD and CelebA for performance testing. Besides protecting privacy of high-resolution facial images, the proposed system is also justified for its ability in automating parameter tuning and breaking through the limitation of the number of adjustable parameters

    Give me a hint: An ID-free small data transmission protocol for dense IoT devices

    Get PDF
    IoT (Internet of Things) has attracted a lot of attention recently. IoT devices need to report their data or status to base stations at various frequencies. The IoT communications observed by a base station normally exhibit the following characteristics: (1) massively connected, (2) lightly loaded per packet, and (3) periodical or at least mostly predictable. The current design principals of communication networks, when applied to IoT scenarios, however, do not fit well to these requirements. For example, an IPv6 address is 128 bits, which is much longer than a 16-bit temperature report. Also, contending to send a small packet is not cost-effective. In this work, we propose a novel framework, which is slot-based, schedule-oriented, and identity-free for uploading IoT devices' data. We show that it fits very well for IoT applications. The main idea is to bundle time slots with certain hashing functions of device IDs, thus significantly reducing transmission overheads, including device IDs and contention overheads. The framework is applicable from small-scale body-area (wearable) networks to large-scale massively connected IoT networks. Our simulation results verify that this framework is very effective for IoT small data uploading

    r-Hint: A message-efficient random access response for mMTC in 5G networks

    Get PDF
    Massive Machine Type Communication (mMTC) has attracted increasing attention due to the explosive growth of IoT devices. Random Access (RA) for a large number of mMTC devices is especially difficult since the high signaling overhead between User Equipments (UEs) and an eNB may overwhelm the available spectrum resources. To address this issue, we propose “respond by hint” (r-Hint), an ID-free handshaking protocol for contention-based RA in mMTC. The core idea of r-Hint is to avoid sequentially notifying contending UEs of their IDs by broadcasting a hint in the RA Response (RAR). To do so, we exploit the concept of prime factorization and hashing to encode the hint such that UEs can extract their required information accordingly. Our simulation results show that r-Hint reduces the RAR message size by 20%–40%. Such reduction can be translated to around 50% improvement of spectrum efficiency in LTE-M

    Learn to Play: From Knowledge to Repeated Gameplay

    Get PDF
    Online games are popular computer applications around the globe. Games are frequently designed to require extensive in-game knowledge to attain in-game goals, so it may be central to continued gameplay. Little is known about how players seek knowledge, internalize knowledge, and subsequently use it to attain in-game goals. We used theories of flow and learning to build a theoretical framework and examined it by using responses from more than four thousand players. We found that encouraging players to seek and internalize in-game knowledge is an effective strategy to increase gameplay. Interestingly, learning satisfaction was more important than knowledge internalization in predicting goal progress, showing a novel insight for game providers to nudge their players in their knowledge searching. We concluded that asking players to search and internalize in-game knowledge may be a more effective strategy than creating their focused immersion to encourage repeated gameplay
    • 

    corecore