7,774 research outputs found

    Recent development of VUV-based processes for air pollutant degradation

    Get PDF
    published_or_final_versio

    Learning-based reconstruction of FRI signals

    Get PDF
    Finite Rate of Innovation (FRI) sampling theory enables reconstruction of classes of continuous non-bandlimited signals that have a small number of free parameters from their low-rate discrete samples. This task is often translated into a spectral estimation problem that is solved using methods involving estimating signal subspaces, which tend to break down at a certain peak signal-to-noise ratio (PSNR). To avoid this breakdown, we consider alternative approaches that make use of information from labelled data. We propose two model-based learning methods, including deep unfolding the denoising process in spectral estimation, and constructing an encoder-decoder deep neural network that models the acquisition process. Simulation results of both learning algorithms indicate significant improvements of the breakdown PSNR over classical subspace-based methods. While the deep unfolded network achieves similar performance as the classical FRI techniques and outperforms the encoder-decoder network in the low noise regimes, the latter allows to reconstruct the FRI signal even when the sampling kernel is unknown. We also achieve competitive results in detecting pulses from in vivo calcium imaging data in terms of true positive and false positive rate while providing more precise estimations

    A study of various oxide/silicon interfaces by Ar + backsurface bombardment

    Get PDF
    A low-energy (550 eV) argon beam is used to bombard the backsurfaces of 6 kinds of metal–oxide–semiconductor capacitors, and the resulting effects on their interface characteristics are then investigated. The gate oxide of these capacitors includes thermal oxide, trichloroethyene (TCE) oxide, NH3-nitrided oxide, reoxidized-nitrided oxide, rapid-thermal-nitrided oxide, and N2O-nitrided oxide. Measurements show that for bombardment times up to 45 min the interface-state density of all the devices, in general, decreases with increasing bombardment time/dose, and the midgap energy at the silicon surface tends to rise. Moreover, the bombardment is more effective in reducing acceptor-type than donor-type interface states. On the other hand, the change of fixed-charge density is more complex. For TCE, N2O-nitrided and reoxidized-nitrided oxides, fixed-charge density decreases initially with increasing bombardment time, but then increases, while the trend is reversed for the other gate oxides. A model with stress compensation and weak bond breaking is suggested to explain the results. ©1999 American Institute of Physics.published_or_final_versio

    On the force field optimisation of β -lactam cores using the force field Toolkit

    Get PDF
    When employing molecular dynamics (MD) simulations for computer-aided drug design, the quality of the used force fields is highly important. Here we present reparametrisations of the force fields for the core molecules from 9 different β-lactam classes, for which we utilized the force field Toolkit and Gaussian calculations. We focus on the parametrisation of the dihedral angles, with the goal of reproducing the optimised quantum geometry in MD simulations. Parameters taken from CGenFF turn out to be a good initial guess for the multiplicity of each dihedral angle, but the key to a successful parametrisation is found to lie in the phase shifts. Based on the optimised quantum geometry, we come up with a strategy for predicting the phase shifts prior to the dihedral potential fitting. This allows us to successfully parameterise 8 out of the 11 molecules studied here, while the remaining 3 molecules can also be parameterised with small adjustments. Our work highlights the importance of predicting the dihedral phase shifts in the ligand parametrisation protocol, and provides a simple yet valuable strategy for improving the process of parameterising force fields of drug-like molecules

    Dual Drug-Loaded Biofunctionalized Amphiphilic Chitosan Nanoparticles: Enhanced Synergy between Cisplatin and Demethoxycurcumin against Multidrug-Resistant Stem-Like Lung Cancer Cells

    Get PDF
    Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept which addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, release kinetics may differ between drugs and general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggest preclinical studies using relevant disease models to be justified

    Characterization and Comparison of 2 Distinct Epidemic Community-Associated Methicillin-Resistant Staphylococcus aureus Clones of ST59 Lineage.

    Get PDF
    Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone

    Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects

    Get PDF
    A six-channel wavelength-division-multiplexed optical transceiver with a compact footprint of 1.5 x 0.65 mm(2) for off-chip and on-chip interconnects is demonstrated on a single silicon-on-insulator chip. An arrayed waveguide grating is used as the (de)multiplexer, and III-V electroabsorption sections fabricated by hybrid integration technology are used as both modulators and detectors, which also enable duplex links. The 30-Gb/s capacity for each of the six wavelength channels for the off-chip transceiver is demonstrated. For the on-chip interconnect, an electrical-to-electrical 3-dB bandwidth of 13 GHz and a data rate of 30 Gb/s per wavelength are achieved
    • …
    corecore