11,139 research outputs found

    Cryptanalysis of a multi-party quantum key agreement protocol with single particles

    Full text link
    Recently, Sun et al. [Quant Inf Proc DOI: 10.1007/s11128-013-0569-x] presented an efficient multi-party quantum key agreement (QKA) protocol by employing single particles and unitary operations. The aim of this protocol is to fairly and securely negotiate a secret session key among NN parties with a high qubit efficiency. In addition, the authors claimed that no participant can learn anything more than his/her prescribed output in this protocol, i.e., the sub-secret keys of the participants can be kept secret during the protocol. However, here we points out that the sub-secret of a participant in Sun et al.'s protocol can be eavesdropped by the two participants next to him/her. In addition, a certain number of dishonest participants can fully determine the final shared key in this protocol. Finally, we discuss the factors that should be considered when designing a really fair and secure QKA protocol.Comment: 7 page

    A Two-Stage Training Framework for Joint Speech Compression and Enhancement

    Full text link
    This paper considers the joint compression and enhancement problem for speech signal in the presence of noise. Recently, the SoundStream codec, which relies on end-to-end joint training of an encoder-decoder pair and a residual vector quantizer by a combination of adversarial and reconstruction losses,has shown very promising performance, especially in subjective perception quality. In this work, we provide a theoretical result to show that, to simultaneously achieve low distortion and high perception in the presence of noise, there exist an optimal two-stage optimization procedure for the joint compression and enhancement problem. This procedure firstly optimizes an encoder-decoder pair using only distortion loss and then fixes the encoder to optimize a perceptual decoder using perception loss. Based on this result, we construct a two-stage training framework for joint compression and enhancement of noisy speech signal. Unlike existing training methods which are heuristic, the proposed two-stage training method has a theoretical foundation. Finally, experimental results for various noise and bit-rate conditions are provided. The results demonstrate that a codec trained by the proposed framework can outperform SoundStream and other representative codecs in terms of both objective and subjective evaluation metrics. Code is available at \textit{https://github.com/jscscloris/SEStream}
    • …
    corecore