5,398 research outputs found
Colourful Simplicial Depth
Inspired by Barany's colourful Caratheodory theorem, we introduce a colourful
generalization of Liu's simplicial depth. We prove a parity property and
conjecture that the minimum colourful simplicial depth of any core point in any
d-dimensional configuration is d^2+1 and that the maximum is d^(d+1)+1. We
exhibit configurations attaining each of these depths and apply our results to
the problem of bounding monochrome (non-colourful) simplicial depth.Comment: 18 pages, 5 figues. Minor polishin
Time Dependent Saddle Node Bifurcation: Breaking Time and the Point of No Return in a Non-Autonomous Model of Critical Transitions
There is a growing awareness that catastrophic phenomena in biology and
medicine can be mathematically represented in terms of saddle-node
bifurcations. In particular, the term `tipping', or critical transition has in
recent years entered the discourse of the general public in relation to
ecology, medicine, and public health. The saddle-node bifurcation and its
associated theory of catastrophe as put forth by Thom and Zeeman has seen
applications in a wide range of fields including molecular biophysics,
mesoscopic physics, and climate science. In this paper, we investigate a simple
model of a non-autonomous system with a time-dependent parameter and
its corresponding `dynamic' (time-dependent) saddle-node bifurcation by the
modern theory of non-autonomous dynamical systems. We show that the actual
point of no return for a system undergoing tipping can be significantly delayed
in comparison to the {\em breaking time} at which the
corresponding autonomous system with a time-independent parameter undergoes a bifurcation. A dimensionless parameter
is introduced, in which is the curvature
of the autonomous saddle-node bifurcation according to parameter ,
which has an initial value of and a constant rate of change . We
find that the breaking time is always less than the actual point
of no return after which the critical transition is irreversible;
specifically, the relation is analytically obtained. For a system with a small , there exists a significant window of opportunity
during which rapid reversal of the environment can save the system from
catastrophe
Relative Stability of Network States in Boolean Network Models of Gene Regulation in Development
Progress in cell type reprogramming has revived the interest in Waddington's
concept of the epigenetic landscape. Recently researchers developed the
quasi-potential theory to represent the Waddington's landscape. The
Quasi-potential U(x), derived from interactions in the gene regulatory network
(GRN) of a cell, quantifies the relative stability of network states, which
determine the effort required for state transitions in a multi-stable dynamical
system. However, quasi-potential landscapes, originally developed for
continuous systems, are not suitable for discrete-valued networks which are
important tools to study complex systems. In this paper, we provide a framework
to quantify the landscape for discrete Boolean networks (BNs). We apply our
framework to study pancreas cell differentiation where an ensemble of BN models
is considered based on the structure of a minimal GRN for pancreas development.
We impose biologically motivated structural constraints (corresponding to
specific type of Boolean functions) and dynamical constraints (corresponding to
stable attractor states) to limit the space of BN models for pancreas
development. In addition, we enforce a novel functional constraint
corresponding to the relative ordering of attractor states in BN models to
restrict the space of BN models to the biological relevant class. We find that
BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics
of pancreas cell differentiation. This framework can also determine the genes'
influence on cell state transitions, and thus can facilitate the rational
design of cell reprogramming protocols.Comment: 24 pages, 6 figures, 1 tabl
A taxonomy for decentralized finance
Decentralized Finance (‘DeFi’) has gained tremendous momentum over the past three years by using novel approaches to disintermediating financial institutions in the provision of financial services. However, empirical research in this field is still rare, and a more comprehensive understanding of the domain is a missing component in academic research. This paper develops a taxonomy based on a comprehensive literature analysis to structure this emerging field systematically. The taxonomy includes three perspectives (strategy, organization, technology) and seven dimensions (blockchain, value proposition, token type, business process, price mechanism, protocol type, integration type) as well as thirty-six characteristics. The application of the taxonomy to 278 DeFi start-ups reveals that most of the DeFi start-ups focus on Ethereum (36.3%) and have a focus on analytics and automation (52%), while, surprisingly only a few incorporate decentralized governance approaches (3.3%), provide decentralized exchanges (14%) or integrate off-chain data
- …