10 research outputs found
Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence
<p>Abstract</p> <p>Background</p> <p>Class C G protein-coupled receptors (GPCRs) represent a distinct group of the GPCR family, which structurally possess a characteristically distinct extracellular domain inclusive of the Venus flytrap module (VFTM). The VFTMs of the class C GPCRs is responsible for ligand recognition and binding, and share sequence similarity with bacterial periplasmic amino acid binding proteins (PBPs). An extensive phylogenetic investigation of the VFTMs was conducted by analyzing for functional divergence and testing for positive selection for five typical groups of the class C GPCRs. The altered selective constraints were determined to identify the sites that had undergone functional divergence via positive selection. In order to structurally demonstrate the pattern changes during the evolutionary process, three-dimensional (3D) structures of the GPCR VFTMs were modelled and reconstructed from ancestral VFTMs.</p> <p>Results</p> <p>Our results show that the altered selective constraints in the VFTMs of class C GPCRs are statistically significant. This implies that functional divergence played a key role in characterizing the functions of the VFTMs after gene duplication events. Meanwhile, positive selection is involved in the evolutionary process and drove the functional divergence of the VFTMs. Our results also reveal that three continuous duplication events occurred in order to shape the evolutionary topology of class C GPCRs. The five groups of the class C GPCRs have essentially different sites involved in functional divergence, which would have shaped the specific structures and functions of the VFTMs.</p> <p>Conclusion</p> <p>Taken together, our results show that functional divergence involved positive selection and is partially responsible for the evolutionary patterns of the class C GPCR VFTMs. The sites involved in functional divergence will provide more clues and candidates for further research on structural-function relationships of these modules as well as shedding light on the activation mechanism of the class C GPCRs.</p
A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids
Background: Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings: Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABA receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion: The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases
Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer
GPCRs play critical roles in cell communication. Although GPCRs can form heteromers, their role in signaling remains elusive. Here we used rat metabotropic glutamate (mGlu) receptors as prototypical dimers to study the functional interaction between each subunit. mGluRs can form both constitutive homo- and heterodimers. Whereas both mGlu2 and mGlu4 couple to G proteins, G protein activation is mediated by mGlu4 heptahelical domain (HD) exclusively in mGlu2-4 heterodimers. Such asymmetric transduction results from the action of both the dimeric extracellular domain, and an allosteric activation by the partially-activated non-functional mGlu2 HD. G proteins activation by mGlu2 HD occurs if either the mGlu2 HD is occupied by a positive allosteric modulator or if mGlu4 HD is inhibited by a negative modulator. These data revealed an oriented asymmetry in mGlu heterodimers that can be controlled with allosteric modulators. They provide new insight on the allosteric interaction between subunits in a GPCR dimer
GABAB Receptor Subunit GB1 at the Cell Surface Independently Activates ERK1/2 through IGF-1R Transactivation
BACKGROUND: Functional GABA(B) receptor is believed to require hetero-dimerization between GABA(B1) (GB1) and GABA(B2) (GB2) subunits. The GB1 extracellular domain is required for ligand binding, and the GB2 trans-membrane domain is responsible for coupling to G proteins. Atypical GABA(B) receptor responses observed in GB2-deficient mice suggested that GB1 may have activity in the absence of GB2. However the underlying mechanisms remain poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: Here, by using cells overexpressing a GB1 mutant (GB1asa) with the ability to translocate to the cell surface in the absence of GB2, we show that GABA(B) receptor agonists, such as GABA and Baclofen, can induce ERK1/2 phosphorylation in the absence of GB2. Furthermore, we demonstrate that GB1asa induces ERK1/2 phosphorylation through Gi/o proteins and PLC dependent IGF-1R transactivation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that GB1 may form a functional receptor at the cell surface in the absence of GB2
Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning
The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA
is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists,
whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface,
increasing agonist affinity to GABA(B1), and activating associated G proteins.
These subunits each comprise two domains, a Venus flytrap domain (VFT) and a
heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1)
VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan
wedge scanning approach to investigate how the GABA(B) VFT dimer controls
receptor activity. We first identified the dimerization interface using a
bioinformatics approach and then showed that introducing an N-glycan at this
interface prevents the association of the two subunits and abolishes all
activities of GABA(B2), including agonist activation of the G protein. We also
identified a second region in the VFT where insertion of an N-glycan does not
prevent dimerization, but blocks agonist activation of the receptor. These data
provide new insight into the function of this prototypical GPCR and demonstrate
that a change in the dimerization interface is required for receptor
activation
Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer
International audienceGPCRs play critical roles in cell communication. Although GPCRs can form heteromers, their role in signaling remains elusive. Here we used rat metabotropic glutamate (mGlu) receptors as prototypical dimers to study the functional interaction between each subunit. mGluRs can form both constitutive homo- and heterodimers. Whereas both mGlu2 and mGlu4 couple to G proteins, G protein activation is mediated by mGlu4 heptahelical domain (HD) exclusively in mGlu2-4 heterodimers. Such asymmetric transduction results from the action of both the dimeric extracellular domain, and an allosteric activation by the partially-activated non-functional mGlu2 HD. G proteins activation by mGlu2 HD occurs if either the mGlu2 HD is occupied by a positive allosteric modulator or if mGlu4 HD is inhibited by a negative modulator. These data revealed an oriented asymmetry in mGlu heterodimers that can be controlled with allosteric modulators. They provide new insight on the allosteric interaction between subunits in a GPCR dimer
GB1asa can induce ERK1/2 phosphorylation independent of GB2.
<p>(A) Effects of GABA (100 µM) and Baclofen (100 µM) on ERK1/2 phosphorylation in cells overexpressing GB1asa over the indicated time course. (B) Effects of CGP54626 on GABA-induced ERK1/2 phosphorylation. CGP54626 (10 µM; 20 min) is incubated before treatment with GABA (100 µM; 3 min). (C) Detection of expression of <sup>HA</sup>GB1asa alone or <sup>HA</sup>GB1 in the presence of <sup>Flag</sup>GB2 by ELISA (upper panel) and Western blots (lower panel). (D) Time course of the ERK1/2 phosphorylation induced by GABA (100 µM) in the HEK293 cells transfected with both GB1 and GB2 or GB1asa alone. The representative western blots are shown under the quantified data of ERK1/2 phosphorylation analyzed from at least three separate experiments (mean ± SEM).</p
In the absence of GB2, GB1asa induction of ERK1/2 phosphorylation is greater than induction by wild type GB1.
<p>(A) Detection of the cell surface expression of GB1 or GB1asa (upper panel) and total expression by Western blots with anti-HA and anti-β-actin (lower panel). (B) Time course of the endogenous ERK1/2 phosphorylation induced by GABA (100 µM) in the HEK293 cells transfected with GB1asa or GB1 alone. (C) Schematic representation of the signaling pathway mediated by GB1asa at the cell surface. Activation of ERK1/2 phosphorylation by GB1asa requires Gi/o proteins to activate PLC pathway, which in turn transactivates IGF-IR.</p