6,874 research outputs found
Interfacial chemical oxidative synthesis of multifunctional polyfluoranthene.
A novel polyfluoranthene (PFA) exhibiting strong visual fluorescence emission, a highly amplified quenching effect, and widely controllable electrical conductivity is synthesized by the direct cationic oxidative polymerization of fluoranthene in a dynamic interface between n-hexane and nitromethane containing fluoranthene and FeCl3, respectively. A full characterization of the molecular structure signifies that the PFAs have a degree of polymerization from 22-50 depending on the polymerization conditions. A polymerization mechanism at the interface of the hexane/nitromethane biphasic system is proposed. The conductivity of the PFA is tunable from 6.4 × 10-6 to 0.074 S cm-1 by doping with HCl or iodine. The conductivity can be significantly enhanced to 150 S cm-1 by heat treatment at 1100 °C in argon. A PFA-based chemosensor shows a highly selective sensitivity for Fe3+ detection which is unaffected by other common metal ions. The detection of Fe3+ likely involves the synergistic effect of well-distributed π-conjugated electrons throughout the PFA helical chains that function as both the fluorophore and the receptor units
Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors
The superconducting gap is the fundamental parameter that characterizes the
superconducting state, and its symmetry is a direct consequence of the
mechanism responsible for Cooper pairing. Here we discuss about angle-resolved
photoemission spectroscopy measurements of the superconducting gap in the
Fe-based high-temperature superconductors. We show that the superconducting gap
is Fermi surface dependent and nodeless with small anisotropy, or more
precisely, a function of momentum. We show that while this observation is
inconsistent with weak coupling approaches for superconductivity in these
materials, it is well supported by strong coupling models and global
superconducting gaps. We also suggest that the strong anisotropies measured by
other probes sensitive to the residual density of states are not related to the
pairing interaction itself, but rather emerge naturally from the smaller
lifetime of the superconducting Cooper pairs that is a direct consequence of
the momentum dependent interband scattering inherent to these materials.Comment: 7 pages, 5 figure
Collaborating With People Like Me: Ethnic Co-authorship within the US
This study examines the ethnic identity of authors in over 2.5 million scientific papers written by US-based authors from 1985 to 2008, a period in which the frequency of English and European names among authors fell relative to the frequency of names from China and other developing countries. We find that persons of similar ethnicity co-author together more frequently than predicted by their proportion among authors. Using a measure of homophily for individual papers, we find that greater homophily is associated with publication in lower impact journals and with fewer citations, even holding fixed the authors' previous publishing performance. By contrast, papers with authors in more locations and with longer reference lists get published in higher impact journals and receive more citations than others. These findings suggest that diversity in inputs by author ethnicity, location, and references leads to greater contributions to science as measured by impact factors and citations
A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways).
Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest
Quartz-based flat-crystal resonant inelastic x-ray scattering spectrometer with sub-10 meV energy resolution
Continued improvement of the energy resolution of resonant inelastic x-ray
scattering (RIXS) spectrometers is crucial for fulfilling the potential of this
technique in the study of electron dynamics in materials of fundamental and
technological importance. In particular, RIXS is the only alternative tool to
inelastic neutron scattering capable of providing fully momentum resolved
information on dynamic spin structures of magnetic materials, but is limited to
systems whose magnetic excitation energy scales are comparable to the energy
resolution. The state-of-the-art spherical diced crystal analyzer optics
provides energy resolution as good as 25 meV but has already reached its
theoretical limit. Here, we demonstrate a novel sub-10meV RIXS spectrometer
based on flat-crystal optics at the Ir-L absorption edge (11.215 keV)
that achieves an analyzer energy resolution of 3.9meV, very close to the
theoretical value of 3.7meV. In addition, the new spectrometer allows
efficient polarization analysis without loss of energy resolution. The
performance of the instrument is demonstrated using longitudinal acoustical and
optical phonons in diamond, and magnon in SrIrO. The novel
sub-10meV RIXS spectrometer thus provides a window into magnetic
materials with small energy scales
Recommended from our members
Direct grafting of tetraaniline via perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces.
Conjugated polyaniline has shown anticorrosive, hydrophilic, antibacterial, pH-responsive, and pseudocapacitive properties making it of interest in many fields. However, in situ grafting of polyaniline without harsh chemical treatments is challenging. In this study, we report a simple, fast, and non-destructive surface modification method for grafting tetraaniline (TANI), the smallest conjugated repeat unit of polyaniline, onto several materials via perfluorophenylazide photochemistry. The new materials are characterized by nuclear magnetic resonance (NMR) and electrospray ionization (ESI) mass spectroscopy. TANI is shown to be covalently bonded to important carbon materials including graphite, carbon nanotubes (CNTs), and reduced graphene oxide (rGO), as confirmed by transmission electron microscopy (TEM). Furthermore, large area modifications on polyethylene terephthalate (PET) films through dip-coating or spray-coating demonstrate the potential applicability in biomedical applications where high transparency, patternability, and low bio-adhesion are needed. Another important application is preventing biofouling in membranes for water purification. Here we report the first oligoaniline grafted water filtration membranes by modifying commercially available polyethersulfone (PES) ultrafiltration (UF) membranes. The modified membranes are hydrophilic as demonstrated by captive bubble experiments and exhibit extraordinarily low bovine serum albumin (BSA) and Escherichia coli adhesions. Superior membrane performance in terms of flux, BSA rejection and flux recovery after biofouling are demonstrated using a cross-flow system and dead-end cells, showing excellent fouling resistance produced by the in situ modification
Dense and accurate motion and strain estimation in high resolution speckle images using an image-adaptive approach
Digital image processing methods represent a viable and well acknowledged alternative to strain gauges and interferometric techniques for determining full-field displacements and strains in materials under stress. This paper presents an image adaptive technique for dense motion and strain estimation using high-resolution speckle images that show the analyzed material in its original and deformed states. The algorithm starts by dividing the speckle image showing the original state into irregular cells taking into consideration both spatial and gradient image information present. Subsequently the Newton-Raphson digital image correlation technique is applied to calculate the corresponding motion for each cell. Adaptive spatial regularization in the form of the Geman-McClure robust spatial estimator is employed to increase the spatial consistency of the motion components of a cell with respect to the components of neighbouring cells. To obtain the final strain information, local least-squares fitting using a linear displacement model is performed on the horizontal and vertical displacement fields. To evaluate the presented image partitioning and strain estimation techniques two numerical and two real experiments are employed. The numerical experiments simulate the deformation of a specimen with constant strain across the surface as well as small rigid-body rotations present while real experiments consist specimens that undergo uniaxial stress. The results indicate very good accuracy of the recovered strains as well as better rotation insensitivity compared to classical techniques
Elastic turbulence homogenizes fluid transport in stratified porous media
Many key environmental, industrial, and energy processes rely on controlling
fluid transport within subsurface porous media. These media are typically
structurally heterogeneous, often with vertically-layered strata of distinct
permeabilities -- leading to uneven partitioning of flow across strata, which
can be undesirable. Here, using direct in situ visualization, we demonstrate
that polymer additives can homogenize this flow by inducing a purely-elastic
flow instability that generates random spatiotemporal fluctuations and excess
flow resistance in individual strata. In particular, we find that this
instability arises at smaller imposed flow rates in higher-permeability strata,
diverting flow towards lower-permeability strata and helping to homogenize the
flow. Guided by the experiments, we develop a parallel-resistor model that
quantitatively predicts the flow rate at which this homogenization is optimized
for a given stratified medium. Thus, our work provides a new approach to
homogenizing fluid and passive scalar transport in heterogeneous porous media
Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-locked lakes of Schirmacher Oasis and the Perennially Ice-covered Lake Untersee in East Antarctica
Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions
- …