3,034 research outputs found
Carbon Concentration Dependence of the Superconducting Transition Temperature and Structure of MgCxNi3
The crystal structure of the superconductor MgCxNi3 is reported as a function
of carbon concentration determined by powder neutron diffraction. The
single-phase perovskite structure was found in only a narrow range of carbon
content, 0.88 < x < 1.0. The superconducting transition temperature was found
to decrease systematically with decreasing carbon concentration. The
introduction of carbon vacancies has a significant effect on the positions of
the Ni atoms. No evidence for long range magnetic ordering was seen by neutron
diffraction for carbon stoichiometries within the perovskite phase stability
range.Comment: 4 figure
Thermodynamic Comparison and the Ideal Glass Transition of A Monatomic Systems Modeled as an Antiferromagnetic Ising Model on Husimi and Cubic Recursive Lattices of the Same Coordination Number
Two kinds of recursive lattices with the same coordination number but
different unit cells (2-D square and 3-D cube) are constructed and the
antiferromagnetic Ising model is solved exactly on them to study the stable and
metastable states. The Ising model with multi-particle interactions is designed
to represent a monatomic system or an alloy. Two solutions of the model exhibit
the crystallization of liquid, and the ideal glass transition of supercooled
liquid respectively. Based on the solutions, the thermodynamics on both
lattices was examined. In particular, the free energy, energy, and entropy of
the ideal glass, supercooled liquid, crystal, and liquid state of the model on
each lattice were calculated and compared with each other. Interactions between
particles farther away than the nearest neighbor distance are taken into
consideration. The two lattices show comparable properties on the transition
temperatures and the thermodynamic behaviors, which proves that both of them
are practical to describe the regular 3-D case, while the different effects of
the unit types are still obvious.Comment: 27 pages, 13 figure
Structural and Magnetic Properties of Pyrochlore Solid Solutions (Y,Lu)2Ti2-x(Nb,Ta)xO7+/-y
The synthesis and characterization of the pyrochlore solid solutions,
Y2Ti2-xNbxO7-y, Lu2Ti2-xNbxO7-y, Y2Ti2-xTaxO7-y and Lu2TiTaO7-y (-0.4<y<0.5),
is described. Synthesis at 1600 C, and 10-5 Torr yields oxygen deficiency in
all systems. All compounds are found to be paramagnetic and semiconducting,
with the size of the local moments being less, in some cases substantially
less, than the expected value for the number of nominally unpaired electrons
present. Thermogravimetric analysis (TGA) shows that all compounds can be fully
oxidized while retaining the pyrochlore structure, yielding oxygen rich
pyrochlores as white powders. Powder neutron diffraction of Y2TiNbO7-based
samples was done. Refinement of the data for oxygen deficient Y2TiNbO6.76
indicates the presence of a distribution of oxygen over the 8b and 48f sites.
Refinement of the data for oxygen rich Y2TiNbO7.5 shows these sites to be
completely filled, with an additional half filling of the 8a site. The magnetic
and TGA data strongly suggest a preference for a Ti3+/(Nb,Ta)5+ combination, as
opposed to Ti4+/(Nb,Ta)4+, in this pyrochlore family. In addition, the evidence
clearly points to Ti3+ as the source of the localized moments, with no evidence
for localized Nb4+ moments.Comment: Accepted to Journal of Solid State Chemistr
Pedestrian Solution of the Two-Dimensional Ising Model
The partition function of the two-dimensional Ising model with zero magnetic
field on a square lattice with m x n sites wrapped on a torus is computed
within the transfer matrix formalism in an explicit step-by-step approach
inspired by Kaufman's work. However, working with two commuting representations
of the complex rotation group SO(2n,C) helps us avoid a number of unnecessary
complications. We find all eigenvalues of the transfer matrix and therefore the
partition function in a straightforward way.Comment: 10 pages, 2 figures; eqs. (101) and (102) corrected, files for fig. 2
fixed, minor beautification
Interaction of ionic liquids with noble metal surfaces: Structure formation and stability of [OMIM][TFSA] and [EMIM][TFSA] on Au(111) and Ag(111)
Principles of structure formation and adsorbate–adsorbate interactions in ionic liquid adlayers on metal surfaces were investigated in a comparative STM study on Ag(111) and Au(111) surfaces.</p
Polarization and `Model Independent' Extraction of from and
We briefly discuss the predictions of the heavy quark effective theory for
the semileptonic decays of a heavy pseudoscalar to a light one, or to a light
vector meson. We point out that measurement of combinations of differential
helicity decay rates at Cleo-c and the factories can provide a model
independent means of extracting the ratio
. We briefly discuss the corrections to this prediction.Comment: 8 pages, LaTeX, 1 figur
Structural Disorder, Octahedral Coordination, and 2-Dimensional Ferromagnetism in Anhydrous Alums
The crystal structures of the triangular lattice, layered anhydrous alums
KCr(SO4)2, RbCr(SO4)2 and KAl(SO4)2 are characterized by X-ray and neutron
powder diffraction at temperatures between 1.4 and 773 K. The compounds all
crystallize in the space group P-3, with octahedral coordination of the
trivalent cations. In all cases, small amounts of disorder in the stacking of
the triangular layers of corner sharing MO6 octahedra and SO4 tetrahedra is
seen, with the MO6-SO4 network rotated in opposite directions between layers.
The electron diffraction study of KCr(SO4)2 supports this model, which on
average can be taken to imply trigonal prismatic coordination for the M3+ ions;
as was previously reported for the prototype anhydrous alum KAl(SO4)2. The
temperature dependent magnetic susceptibilities for ACr(SO4)2 (A = K,Rb,Cs)
indicate the presence of predominantly ferromagnetic interactions. Low
temperature powder neutron diffraction reveals that the magnetic ordering is
ferromagnetic in-plane, with antiferromagnetic ordering between planes below 3
K.Comment: Accepted to the Journal of Solid State Chemistr
Modeling and simulation of bulk gallium nitride power semiconductor devices
Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range
Diagnostic for Dilaton Dark Energy
diagnostic can differentiate between different models of dark energy
without the accurate current value of matter density. We apply this geometric
diagnostic to dilaton dark energy(DDE) model and differentiate DDE model from
LCDM. We also investigate the influence of coupled parameter on the
evolutive behavior of with respect to redshift . According to the
numerical result of , we get the current value of equation of state
=-0.952 which fits the WMAP5+BAO+SN very well.Comment: 6 pages and 6 figures
Thermal Recombination: Beyond the Valence Quark Approximation
Quark counting rules derived from recombination models agree well with data
on hadron production at intermediate transverse momenta in relativistic
heavy-ion collisions. They convey a simple picture of hadrons consisting only
of valence quarks. We discuss the inclusion of higher Fock states that add sea
quarks and gluons to the hadron structure. We show that, when recombination
occurs from a thermal medium, hadron spectra remain unaffected by the inclusion
of higher Fock states. However, the quark number scaling for elliptic flow is
somewhat affected. We discuss the implications for our understanding of data
from the Relativistic Heavy Ion Collider.Comment: 5 pages, 5 figure
- …