25 research outputs found

    Sperm trajectories form chiral ribbons.

    Get PDF
    We report the discovery of an entirely new three-dimensional (3D) swimming pattern observed in human and horse sperms. This motion is in the form of 'chiral ribbons', where the planar swing of the sperm head occurs on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. The latter, i.e., the twisted ribbon trajectory, also defines a minimal surface, exhibiting zero mean curvature for all the points on its surface. These chiral ribbon swimming patterns cannot be represented or understood by already known patterns of sperms or other micro-swimmers. The discovery of these unique patterns is enabled by holographic on-chip imaging of >33,700 sperm trajectories at >90-140 frames/sec, which revealed that only ~1.7% of human sperms exhibit chiral ribbons, whereas it increases to ~27.3% for horse sperms. These results might shed more light onto the statistics and biophysics of various micro-swimmers' 3D motion

    Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids

    Get PDF
    Chromosome pairing in the meiotic metaphase I of wheatrye hybrids has been characterized by sequential genomic and fluorescent in situ hybridization allowing not only the discrimination of wheat and rye chromosomes, but also the identification of the individual wheat and rye chromosome arms involved in the chromosome associations. The majority of associations (93.8%) were observed between the wheat chromosomes. The largest number of wheat-wheat chromosome associations (53%) was detected between the A and D genomes, while the frequency of B-D and A-B associations was significantly lower (32 and 8%, respectively). Among the A-D chromosome associations, pairing between the 3AL and 3DL arms was observed with the highest frequency, while the most frequent of all the chromosome associations (0.113/ cell) was found to be the 3DS-3BS. Differences in the pairing frequency of the individual chromosome arms of wheat-rye hybrids have been discussed in relation to the homoeologous relationships between the constituent genomes of hexaploid wheat

    Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    Get PDF
    Background: Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings: In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions: These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of it

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    FACS analysis of apoptosis or necrosis.

    No full text
    <p>Cells were treated with or without 1 µg/mL DBP-maf for 48 hours, propidium iodide and annexin V were added and cells were analyzed using flow cytometry. Results are representative of three experiments.</p

    DBP-maf inhibits tumor cell migration.

    No full text
    <p>LNCaP (<b>A</b>), LNCaPLN3 (<b>B</b>), PC3M (<b>C</b>) or PC3MLN4 (<b>D</b>) cells were added (150,000/well) to the top chamber of a modified Boyden chamber (+/− DBP-maf) with 10% FBS in the bottom chamber. After 6 hours cells were removed that had not migrated and remaining cells were quantitated using an acid phosphatase assay. Results were normalized to control. Experiments were performed a minimum of three times and error is shown as +/− SD. Compared to cell growth without DBP-maf, adding DBP-maf had a statistically significant overall reduction of cell migration at 30% (P = 0.0003) for the combined four tumor cell types. Individual significant reduction rates were found with each of these tumor cell types. Compared to control, significant reduction was seen with DBP-maf at (<b>A</b>) 20% P = 0.0022 (<b>B</b>) 20% P = 0.0029 (<b>C</b>) 10% P = .0045 (<b>D</b>) 30% P = .0094. n = 3.</p

    DBP-maf inhibits expression of uPAR in PC3M cells.

    No full text
    <p>PC3M, and PC3MLN4 cells were treated with DBP or DBP-maf (0.001 and 1 µg/mL) and incubated for 24 hours then harvested. RT products (cDNA), identified as uPAR1, 2, and 3, were amplified by real-time quantitative PCR. p<0.05.</p

    A DBP-maf peptide inhibits tumor cell migration.

    No full text
    <p>LNCaP (<b>A</b>), LNCaPLN3 (<b>B</b>), PC3M (<b>C</b>) or PC3MLN4 (<b>D</b>) cells were added (150,000/well) to the top chamber of a modified Boyden chamber (+/− DBP-maf) with 10% FBS in the bottom chamber. After 6 hours cells were removed that had not migrated and remaining cells were quantitated using an acid phosphatase assay. Results were normalized to control. Experiments were performed a minimum of three times and error is shown as +/− SD. Compared to migration without DBP-maf, adding DBP-maf had a statistically significant reduction of migration at 40% (P<0.0001) for the combination of all four tumor cell types. Individual significant reduction rates were found with each of these tumor cell types. Compared to control, significant reduction was seen with DBP-maf at (<b>A</b>) 30% P = 0.0038 (<b>B</b>) 40% P = 0.0016 (<b>C</b>) 20% P = .0038 (<b>D</b>) 40% P = .0005. n = 3.</p

    DBP-maf inhibits protein expression of uPAR.

    No full text
    <p>LNCaP, LNCaPLN3, PC3M, and PC3MLN4 were treated with DBP or DBP-maf and incubated for 24 hours (<b>A</b>) then harvested and immunoblotted using an anti-uPAR antibody. LnCaPLN3 cells at 72 hours (<b>B</b>). p<0.05.</p
    corecore