184,943 research outputs found
Weak Gravity Conjecture for the Effective Field Theories with N Species
We conjecture an intrinsic UV cutoff for the validity of the effective field
theory with a large number of species coupled to gravity. In four dimensions
such a UV cutoff takes the form for scalar
fields with the same potential , . This conjecture
implies that the assisted chaotic inflation or N-flation might be in the
swampland, not in the landscape. Similarly a UV cutoff
is conjectured for the U(1) gauge theory with species.Comment: 12 pages; refs added and some statements clarifie
Limits from Weak Gravity Conjecture on Dark Energy Models
The weak gravity conjecture has been proposed as a criterion to distinguish
the landscape from the swampland in string theory. As an application in
cosmology of this conjecture, we use it to impose theoretical constraint on
parameters of two types of dark energy models. Our analysis indicates that the
Chaplygin-gas-type models realized in quintessence field are in the swampland,
whereas the power-low decay model of the variable cosmological constant can
be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in
content, and acknowledgement adde
Thermochemical Conversion of Biomass in Smouldering Combustion across Scales: the Roles of Heterogeneous Kinetics, Oxygen and Transport Phenomena
AbstractThe thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0–33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger–Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales
Two-component Fermi gas with a resonant interaction
We consider a two-component Fermi gas interacting via a Feshbach molecular
state. It is shown that an important energy scale is
where is the Feshbach coupling constant and the mass of the particles.
Only when where is the Fermi
energy can the gas be expected to enter a universal state in the unitarity
limit on the atomic side of the resonance where there are no molecules present.
The universal state is distinct from the molecular gas state on the other side
of the resonance. We furthermore calculate the energy of the gas for this
universal state and our results are related to current experiments on Li
and K.Comment: 4 pages, 2 figure
Weak gravity conjecture constraints on inflation
We consider the gravitational correction to the coupling of the scalar
fields. Weak gravity conjecture says that the gravitational correction to the
running of scalar coupling should be less than the contribution from scalar
fields. For instance, a new scale sets a UV cutoff
on the validity of the effective theory. Furthermore, this
conjecture implies a possible constraint on the inflation model, e.g. the
chaotic inflation model might be in the swampland.Comment: 11 pages, 3 figs; monor corrections; some clarifying remarks added
and the final version for publication in JHE
- …