10,536 research outputs found

    Self-Organizing Map Neural Architectures Based on Limit Cycle Attractors

    Get PDF
    Recent efforts to develop large-scale neural architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason is that most conventional SOMs use a static encoding representation: Each input is typically represented by the fixed activation of a single node in the map layer. This not only carries information in an inefficient and unreliable way that impedes building robust multi-SOM neural architectures, but it is also inconsistent with rhythmic oscillations in biological neural networks. Here I develop and study an alternative encoding scheme that instead uses limit cycle attractors of multi-focal activity patterns to represent input patterns/sequences. Such a fundamental change in representation raises several questions: Can this be done effectively and reliably? If so, will map formation still occur? What properties would limit cycle SOMs exhibit? Could multiple such SOMs interact effectively? Could robust architectures based on such SOMs be built for practical applications? The principal results of examining these questions are as follows. First, conditions are established for limit cycle attractors to emerge in a SOM through self-organization when encoding both static and temporal sequence inputs. It is found that under appropriate conditions a set of learned limit cycles are stable, unique, and preserve input relationships. In spite of the continually changing activity in a limit cycle SOM, map formation continues to occur reliably. Next, associations between limit cycles in different SOMs are learned. It is shown that limit cycles in one SOM can be successfully retrieved by another SOM’s limit cycle activity. Control timings can be set quite arbitrarily during both training and activation. Importantly, the learned associations generalize to new inputs that have never been seen during training. Finally, a complete neural architecture based on multiple limit cycle SOMs is presented for robotic arm control. This architecture combines open-loop and closed-loop methods to achieve high accuracy and fast movements through smooth trajectories. The architecture is robust in that disrupting or damaging the system in a variety of ways does not completely destroy the system. I conclude that limit cycle SOMs have great potentials for use in constructing robust neural architectures

    Deep Koopman Learning of Nonlinear Time-Varying Systems

    Full text link
    A data-driven method is developed to approximate an nonlinear time-varying system (NTVS) by a linear time-varying system (LTVS), based on Koopman Operator and deep neural networks. Analysis on the approximation error in system states of the proposed method is investigated. It is further shown by simulation on a simple NTVS that the resulted LTVS approximate the NTVS very well with small approximation errors in states. Furthermore, simulations on a cartpole further show that optimal controller developed based on the achieved LTVS works very well to control the original NTVS

    In-Motion Initial Alignment Method Based on Vector Observation and Truncated Vectorized K-Matrix for SINS

    Get PDF
    • …
    corecore