4,901 research outputs found

    Approximation of fuzzy numbers by convolution method

    Full text link
    In this paper we consider how to use the convolution method to construct approximations, which consist of fuzzy numbers sequences with good properties, for a general fuzzy number. It shows that this convolution method can generate differentiable approximations in finite steps for fuzzy numbers which have finite non-differentiable points. In the previous work, this convolution method only can be used to construct differentiable approximations for continuous fuzzy numbers whose possible non-differentiable points are the two endpoints of 1-cut. The constructing of smoothers is a key step in the construction process of approximations. It further points out that, if appropriately choose the smoothers, then one can use the convolution method to provide approximations which are differentiable, Lipschitz and preserve the core at the same time.Comment: Submitted to Fuzzy Sets and System at Sep 18 201
    • …
    corecore