25 research outputs found

    Health Monitoring for Coated Steel Belts in an Elevator System

    Get PDF
    This paper presents a method of health monitoring for coated steel belts in an elevator system by measuring the electrical resistance of the ropes embedded in the belt. A model on resistance change caused by fretting wear and stress fatigue has been established. Temperature and reciprocating cycles are also taken into consideration when determining the potential strength degradation of the belts. It is proved by experiments that the method could effectively estimate the health degradation of the most dangerous section as well as other ones along the whole belts

    The Local Origin of the Tibetan Pig and Additional Insights into the Origin of Asian Pigs

    Get PDF
    BACKGROUND: The domestic pig currently indigenous to the Tibetan highlands is supposed to have been introduced during a continuous period of colonization by the ancestors of modern Tibetans. However, there is no direct genetic evidence of either the local origin or exotic migration of the Tibetan pig. METHODS AND FINDINGS: We analyzed mtDNA hypervariable segment I (HVI) variation of 218 individuals from seven Tibetan pig populations and 1,737 reported mtDNA sequences from domestic pigs and wild boars across Asia. The Bayesian consensus tree revealed a main haplogroup M and twelve minor haplogroups, which suggested a large number of small scale in situ domestication episodes. In particular, haplogroups D1 and D6 represented two highly divergent lineages in the Tibetan highlands and Island Southeastern Asia, respectively. Network analysis of haplogroup M further revealed one main subhaplogroup M1 and two minor subhaplogroups M2 and M3. Intriguingly, M2 was mainly distributed in Southeastern Asia, suggesting for a local origin. Similar with haplogroup D6, M3 was mainly restricted in Island Southeastern Asia. This pattern suggested that Island Southeastern Asia, but not Southeastern Asia, might be the center of domestication of the so-called Pacific clade (M3 and D6 here) described in previous studies. Diversity gradient analysis of major subhaplogroup M1 suggested three local origins in Southeastern Asia, the middle and downstream regions of the Yangtze River, and the Tibetan highlands, respectively. CONCLUSIONS: We identified two new origin centers for domestic pigs in the Tibetan highlands and in the Island Southeastern Asian region

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Laser Ablation Molecular Isotopic Spectrometry for Molecules Formation Chemistry in Femtosecond-Laser Ablated Plasmas.

    No full text
    Recently, laser ablated molecular isotopic spectrometry (LAMIS) has expanded its capability to explore molecules formation mechanism in laser-induced plasma in addition to isotope analysis. LAMIS is a powerful tool for tracking the origination of atoms that is involved in formation of investigated molecules by labeling atoms with their isotopic substitution. The evolutionary formation pathways of organic molecules, especially of C2 dimers and CN radicals, were frequently reported. However, very little is known about the formation pathways for metallic radicals and heterodimers in laser ablated plasma. This research focuses on elucidating the formation pathways of AlO radicals in femtosecond laser ablated plasma from 18O-labeled Al2O3 pellet. Plasmas expanding with strong forward bias in the direction normal to the sample surface were generated in the wake of a weakly ionized channel created by a femtosecond laser. The formation mechanism of AlO and influence of air were investigated with multiple plasma diagnostic methods such as monochromatic fast gating imaging, spatiotemporal resolved optical emission spectroscopy, and LAMIS. An advanced LAMIS fitting procedure was used to deduce the spatiotemporal distributions of Al18O and Al16O number densities and also their ratios. We found that the Al16O/Al18O number density ratio is higher for plasma portion closer to the sample surface, which suggests that chemical reactions between the plasma plume and ambient air are more intense at the tail of the plasma. The results also reveals that direct association of free Al and O atoms is the main mechanism for the formation of AlO at the early stage of the plasma. To the contrast, chemical reactions between plasma materials and ambient oxygen molecules and the isotope exchange effect are the dominant mechanisms of the formation of AlO and evolution of Al16O/Al18O number density ratio at the late stage of the plasma

    Designing all-solid-state Z-Scheme 2D g-C3N4/Bi2WO6 for improved photocatalysis and photocatalytic mechanism insight

    No full text
    Bi2WO6 was modified by two-dimensional g-C3N4 (2D g-C3N4) via a hydrothermal method. The structure, morphology, optical and electronic properties were investigated by multiple techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Ultraviolet-visible diffuse reflection spectroscopy (DRS), photocurrent and electrochemical impedance spectroscopy (EIS), electron spin resonance (ESR), respectively. Rhodamine B (RhB) was used as the target organic pollutant to research the photocatalytic performance of as-prepared composites. The Bi2WO6/2D g-C3N4 exhibited a remarkable improvement compared with the pure Bi2WO6. The enhanced photocatalytic activity was because the photogenerated electrons and holes can quickly separate by Z-Scheme passageway in composites. The photocatalytic mechanism was also researched in detail through ESR analysis. Keywords: All-solid-state, Z-Scheme photocatalyst, 2D g-C3N4, Bi2WO6, Photocatalysi

    Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel.

    No full text
    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plume splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay

    Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments

    No full text
    Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells. The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years. However, if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge, the conflicts between stoichiometric and other constraints, such as thermodynamic feasibility and enzyme resource availability, would lead to distorted predictions. In this work, we investigated a prediction anomaly of EcoETM, a constraints-based metabolic network model, and introduced the idea of enzyme compartmentalization into the analysis process. Through rational combination of reactions, we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites. This allowed us to correct the pathway structures of l-serine and l-tryptophan. A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments. Notably, this work also reveals the trade-off between product yield and thermodynamic feasibility. Our work is of great value for the structural improvement of constraints-based models

    Effects of age on slaughter performance and meat quality of Binlangjang male buffalo

    No full text
    Twelve representative buffalo were selected from 22 suckling calves, 41 weaned calves, 57 reserve bulls and 20 adult bulls for slaughter. The study aims to assess the effect of age on dressing percentage, meat percentage and carcass meat yield and physico-chemical properties of longissimus dorsi and biceps femoris, and to evaluate the correlation between live weight and marbling, backfat thickness, rib eye area. The results showed that the slaughter performance and meat quality of Binlangjang male buffalo showed an obvious change with age. The dressing percentage decreased from 54.93% to 51.22% with the increase of age, while meat percentage and carcass meat yield increased gradually with age, which were 34.58–38.59%, 62.95–75.34%; Marbling, backfat thickness and rib eye area increased with age, and there was significant difference between the situation before 3 months and after 12 months of age (P  0.05). The levels of fat, protein, cholesterol and inosine acid were significantly different before 3 months of age from those after 12 months (P < 0.05). Cholesterol content was negatively correlated with age, the minimum was 80.25 mg/100 g; Inosine acid content increased with age, reaching 133.11 mg/100 g. Marbling, backfat thickness, rib eye area had a high correlation with live weight, with correlation coefficients respectively at 0.9096, 0.9291, 0.9551. Based on the prediction model of live weight, Buffaloes was suitable for slaughtering for superior slaughter performance and meat quality after 24 months of age

    Global disentangled graph convolutional neural network based on a graph topological metric

    No full text
    Graph convolutional networks (GCNs) are powerful tools for analyzing structured data with entities based on messages passing between a node and its surrounding nodes; these networks exhibit exceptional capabilities in diverse complex graph learning tasks. However, despite GCNs being capable of incorporating information from entities, they often neglect the structural connections between the entities generated by latent factors. In this study, we propose a global disentangled graph convolutional neural network based on a graph topological metric to identify these latent factors and perform graph-level disentanglement learning. In the proposed framework, a simple graph is accepted as the input and disentangled into several factorized graphs. Each factorized graph represents a latent factor and the disentangled relationship among the nodes. Specifically, our approach decouples the message passing process in GCNs into two distinct flows, feature and structural information flow. Importantly, a topological metric, named mean average distance, is introduced to promote the disentanglement among the factor graphs. Furthermore, we utilize the Jensen–Shannon MI estimator to promote disentanglement through feature information flow. Experiments on synthetic and real-world datasets demonstrated the superiority of our framework over state-of-the-art GNN networks. This work introduces a novel approach, preserving independence among latent factors while ensuring each factor maintains a consistent and interpretable meaning. We anticipate that this research can provide theoretical and technical analysis to further advance the understanding of graph disentanglement learning
    corecore