41 research outputs found

    MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    Get PDF
    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression

    LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding.

    Get PDF
    Chromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals. Here, we report that LATS kinases phosphorylated CTCF in the zinc finger (ZF) linkers and disabled its DNA-binding activity. Cellular stress induced LATS nuclear translocation and CTCF ZF linker phosphorylation, and altered the landscape of CTCF genomic binding partly by dissociating it selectively from a small subset of its genomic binding sites. These sites were highly enriched for the boundaries of chromatin domains containing LATS signaling target genes. The stress-induced CTCF phosphorylation and locus-specific dissociation from DNA were LATS-dependent. Loss of CTCF binding disrupted local chromatin domains and down-regulated genes located within them. The study suggests that external signals may rapidly modulate the 3D genome by affecting CTCF genomic binding through ZF linker phosphorylation

    Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice

    Get PDF
    Receptor-interacting protein kinase 3 (Ripk3) is one of the critical mediators of inflammatory cytokine-stimulated signaling. Here we show that Ripk3 signaling selectively regulates both the number and the function of hematopoietic stem cells (HSCs) during stress conditions. Ripk3 signaling is not required for normal homeostatic hematopoiesis. However, in response to serial transplantation, inactivation of Ripk3 signaling prevents stress-induced HSC exhaustion and functional HSC attenuation, while in response to fractionated low doses of ionizing radiation (IR), inactivation of Ripk3 signaling accelerates leukemia/lymphoma development. In both situations, Ripk3 signaling is primarily stimulated by tumor necrosis factor-α. Activated Ripk3 signaling promotes the elimination of HSCs during serial transplantation and pre-leukemia stem cells (pre-LSCs) during fractionated IR by inducing Mlkl-dependent necroptosis. Activated Ripk3 signaling also attenuates HSC functioning and represses a pre-LSC-to-LSC transformation by promoting Mlkl-independent senescence. Furthermore, we demonstrate that Ripk3 signaling induces senescence in HSCs and pre-LSCs by attenuating ISR-mediated mitochondrial quality control

    MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition

    Get PDF
    SummaryThe histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression

    Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    No full text
    Abstract The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g−1 at 100 mA g−1, and deliver high capacity retention after 100 cycles

    A mosaic influenza virus-like particles vaccine provides broad humoral and cellular immune responses against influenza A viruses

    No full text
    Abstract The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic algorithms were utilized to optimize the seasonal influenza A virus (H1N1, H3N2) hemagglutinin (HA) and neuraminidase (NA) antigens, which also contain most potential T-cell epitopes. These mosaic immunogens were then expressed as virus-like particles (VLPs) using the baculovirus expression system. The immunogenicity and protection effectiveness of the mosaic VLPs were compared to the commercial quadrivalent inactivated influenza vaccine (QIV) in the mice model. Strong cross-reactive antibody responses were observed in mice following two doses of vaccination with the mosaic VLPs, with HI titers higher than 40 in 15 of 16 tested strains as opposed to limited cross HI antibody levels with QIV vaccination. After a single vaccination, mice also show a stronger level of cross-reactive antibody responses than the QIV. The QIV vaccinations only elicited NI antibodies to a small number of vaccine strains, and not even strong NI antibodies to its corresponding vaccine components. In contrast, the mosaic VLPs caused robust NI antibodies to all tested seasonal influenza virus vaccine strains. Here, we demonstrated the mosaic vaccines induces stronger cross-reactive antibodies and robust more T-cell responses compared to the QIV. The mosaic VLPs also provided protection against challenges with ancestral influenza A viruses of both H1 and H3 subtypes. These findings indicated that the mosaic VLPs were a promising strategy for developing a broad influenza vaccine in future

    Simulation and Analysis of Oleic Acid Pretreatment for Microwave-Assisted Biodiesel Production

    No full text
    Oleic acid needs to be heated when it is utilized for biodiesel production, but, as a low-loss solution, oleic acid is difficult to heat by microwave. An efficient heating method for oleic acid is designed. A high loss material porous media is placed in a quartz tube, and a microwave directly heats the porous medium of the high loss material. The oleic acid flows through the pores of porous media so that the oleic acid exchanges heat during this process and rapid heating of oleic acid is achieved. A coupling model, based on the finite element method, is used to analyze the microwave heating process. The multiphysics model is based on a single mode cavity operating at 2450 MHz. An elaborate experimental system is developed to validate the multiphysics model through temperature measurements carried out for different flow velocities of oleic acid and different microwave power levels. The computational results are in good agreement with the experimental data. Based on the validated model, the effects of different sizes, porosities, and materials on microwave heating efficiency are analyzed

    Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies

    No full text
    Facile tuning of photophysical properties is highly desirable for boosting the performance and versatility of photoluminescent materials. In an attempt to overcome the challenge of achieving the photoswitching of multicolor luminescence on unimolecular platforms, we here report a novel hierarchical self-assembly of a cyanostilbene–naphthalimide dyad as the realization of phototunable luminescence at the unimolecular level. The work takes advantage of the photoisomerization of the cyanostilbene moiety from the Z form to its E form, which causes a morphological disorder in the molecular self-assembly and gives rise to a dual fluorescent characteristic accompanied by a progressive luminescent color conversion from yellow to green and finally to blue. Such systems with convertible multicolor luminescence might exhibit application potentials for unimolecular selective imaging and labeling, as exemplified by the cell imaging studies presented in this work
    corecore