45 research outputs found

    Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development

    Get PDF
    Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes

    Multifaceted roles of Meg3 in cellular senescence and atherosclerosis

    Get PDF
    Background and aims: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long non-coding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. Methods and Results: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr−/− mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. Conclusions: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis

    The Calcineurin-TFEB-p62 Pathway Mediates the Activation of Cardiac Macroautophagy by Proteasomal Malfunction

    Get PDF
    Rationale: The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway (ALP) are pivotal to proteostasis. Targeting these pathways is emerging as an attractive strategy for treating cancer. However, a significant proportion of patients who receive a proteasome inhibitor-containing regime show cardiotoxicity. Moreover, UPS and ALP defects are implicated in cardiac pathogenesis. Hence, a better understanding of the cross-talk between the two catabolic pathways will help advance cardiac pathophysiology and medicine.Objective: Systemic proteasome inhibition (PSMI) was shown to increase p62/SQSTM1 expression and induce myocardial macroautophagy. Here we investigate how proteasome malfunction activates cardiac ALP.Methods and Results: Myocardial macroautophagy, transcription factor EB (TFEB) expression and activity, and p62 expression were markedly increased in mice with either cardiomyocyte-restricted ablation of Psmc1 (an essential proteasome subunit gene) or pharmacological PSMI. In cultured cardiomyocytes, PSMI-induced increases in TFEB activation and p62 expression were blunted by pharmacological and genetic calcineurin inhibition and by siRNA-mediated Molcn1 silencing. PSMI induced remarkable increases in myocardial autophagic flux in wild type (WT) mice but not p62 null (p62-KO) mice. Bortezomib-induced left ventricular wall thickening and diastolic malfunction was exacerbated by p62 deficiency. In cultured cardiomyocytes from WT mice but not p62-KO mice, PSMI induced increases in LC3-II flux and the lysosomal removal of ubiquitinated proteins. Myocardial TFEB activation by PSMI as reflected by TFEB nuclear localization and target gene expression was strikingly less in p62-KO mice compared with WT mice.Conclusions: (1) The activation of cardiac macroautophagy by proteasomal malfunction is mediated by the Mocln1-calcineurin-TFEB-p62 pathway; (2) p62 unexpectedly exerts a feed-forward effect on TFEB activation by proteasome malfunction; and (3) targeting the Mcoln1-calcineurin-TFEB-p62 pathway may provide new means to intervene cardiac ALP activation during proteasome malfunction

    Autophagy and p62 in cardiac protein quality control

    No full text
    This is an addendum to a recent report which demonstrates for the first time that autophagic flux is increased in the heart of a well-established mouse model of cardiac proteinopathy and p62 is transcriptionally upregulated in cardiomyocytes and hearts overexpressing human cardiomyopathy-linked misfolded proteins. The p62 plays a critical and protective role in aggresome formation and autophagic activation in cardiomyocytes overexpressing misfolded proteins

    Neddylation Regulates Class IIa and III Histone Deacetylases to Mediate Myoblast Differentiation

    No full text
    As the largest tissue in the body, skeletal muscle has multiple functions in movement and energy metabolism. Skeletal myogenesis is controlled by a transcriptional cascade including a set of muscle regulatory factors (MRFs) that includes Myogenic Differentiation 1 (MYOD1), Myocyte Enhancer Factor 2 (MEF2), and Myogenin (MYOG), which direct the fusion of myogenic myoblasts into multinucleated myotubes. Neddylation is a posttranslational modification that covalently conjugates ubiquitin-like NEDD8 (neural precursor cell expressed, developmentally downregulated 8) to protein targets. Inhibition of neddylation impairs muscle differentiation; however, the underlying molecular mechanisms remain less explored. Here, we report that neddylation is temporally regulated during myoblast differentiation. Inhibition of neddylation through pharmacological blockade using MLN4924 (Pevonedistat) or genetic deletion of NEDD8 Activating Enzyme E1 Subunit 1 (NAE1), a subunit of the E1 neddylation-activating enzyme, blocks terminal myoblast differentiation partially through repressing MYOG expression. Mechanistically, we found that neddylation deficiency enhances the mRNA and protein expressions of class IIa histone deacetylases 4 and 5 (HDAC4 and 5) and prevents the downregulation and nuclear export of class III HDAC (NAD-Dependent Protein Deacetylase Sirtuin-1, SIRT1), all of which have been shown to repress MYOD1-mediated MYOG transcriptional activation. Together, our findings for the first time identify the crucial role of neddylation in mediating class IIa and III HDAC co-repressors to control myogenic program and provide new insights into the mechanisms of muscle disease and regeneration

    A new gold(I) complex-Au(PPh3)PT is a deubiquitinase inhibitor and inhibits tumor growthResearch in context

    No full text
    Background: Ubiquitin-proteasome system (UPS) is integral to cell survival by maintaining protein homeostasis, and its dysfunction has been linked to cancer and several other human diseases. Through counteracting ubiquitination, deubiquitinases (DUBs) can either positively or negatively regulate UPS function, thereby representing attractive targets of cancer therapies. Previous studies have shown that metal complexes can inhibit tumor growth through targeting the UPS; however, novel metal complexes with higher specificity for cancer therapy are still lacking. Methods: We synthesized a new gold(I) complex, Au(PPh3)PT. The inhibitory activity of Au(PPh3)PT on the UPS and the growth of multiple cancer cell types were tested in vitro, ex vivo, and in vivo. Furthermore, we compared the efficacy of Au(PPh3)PT with other metal compounds in inhibition of UPS function and tumor growth. Findings: Here we report that (i) a new gold(I) complex-pyrithione, i.e., Au(PPh3)PT, induced apoptosis in two lung cancer cell lines A549 and NCI-H1299; (ii) Au(PPh3)PT severely impaired UPS proteolytic function; (iii) Au(PPh3)PT selectively inhibited 19S proteasome-associated DUBs (UCHL5 and USP14) and other non-proteasomal DUBs with minimal effects on the function of 20S proteasome; (iv) Au(PPh3)PT induced apoptosis in cancer cells from acute myeloid leukemia patients; (v) Au(PPh3)PT effectively suppressed the growth of lung adenocarcinoma xenografts in nude mice; and (vi) Au (PPh3)PT elicited less cytotoxicity in normal cells than several other metal compounds. Interpretation: Together, this study discovers a new gold(I) complex to be an effective inhibitor of the DUBs and a potential anti-cancer drug. Fund: The National High Technology Research and Development Program of China, the project of Guangdong Province Natural Science Foundation, the projects from Foundation for Higher Education of Guangdong, the project from Guangzhou Medical University for Doctor Scientists, the Medical Scientific Research Foundation of Guangdong Province, and the Guangzhou Key Medical Discipline Construction Project Fund
    corecore