100,977 research outputs found

    Mapping functions and critical behavior of percolation on rectangular domains

    Full text link
    The existence probability EpE_p and the percolation probability PP of the bond percolation on rectangular domains with different aspect ratios RR are studied via the mapping functions between systems with different aspect ratios. The superscaling behavior of EpE_p and PP for such systems with exponents aa and bb, respectively, found by Watanabe, Yukawa, Ito, and Hu in [Phys. Rev. Lett. \textbf{93}, 190601 (2004)] can be understood from the lower order approximation of the mapping functions fRf_R and gRg_R for EpE_p and PP, respectively; the exponents aa and bb can be obtained from numerically determined mapping functions fRf_R and gRg_R, respectively.Comment: 17 pages with 6 figure

    Geometry, thermodynamics, and finite-size corrections in the critical Potts model

    Full text link
    We establish an intriguing connection between geometry and thermodynamics in the critical q-state Potts model on two-dimensional lattices, using the q-state bond-correlated percolation model (QBCPM) representation. We find that the number of clusters of the QBCPM has an energy-like singularity for q different from 1, which is reached and supported by exact results, numerical simulation, and scaling arguments. We also establish that the finite-size correction to the number of bonds, has no constant term and explains the divergence of related quantities as q --> 4, the multicritical point. Similar analyses are applicable to a variety of other systems.Comment: 12 pages, 6 figure

    Universal scaling functions for bond percolation on planar random and square lattices with multiple percolating clusters

    Full text link
    Percolation models with multiple percolating clusters have attracted much attention in recent years. Here we use Monte Carlo simulations to study bond percolation on L1×L2L_{1}\times L_{2} planar random lattices, duals of random lattices, and square lattices with free and periodic boundary conditions, in vertical and horizontal directions, respectively, and with various aspect ratio L1/L2L_{1}/L_{2}. We calculate the probability for the appearance of nn percolating clusters, Wn,W_{n}, the percolating probabilities, PP, the average fraction of lattice bonds (sites) in the percolating clusters, n_{n} (n_{n}), and the probability distribution function for the fraction cc of lattice bonds (sites), in percolating clusters of subgraphs with nn percolating clusters, fn(cb)f_{n}(c^{b}) (fn(cs)f_{n}(c^{s})). Using a small number of nonuniversal metric factors, we find that WnW_{n}, PP, n_{n} (n_{n}), and fn(cb)f_{n}(c^{b}) (fn(cs)f_{n}(c^{s})) for random lattices, duals of random lattices, and square lattices have the same universal finite-size scaling functions. We also find that nonuniversal metric factors are independent of boundary conditions and aspect ratios.Comment: 15 pages, 11 figure

    Exact Ampitude Ratio and Finite-Size Corrections for the M x N Square Lattice Ising Model The :

    Full text link
    Let f, U and C represent, respectively, the free energy, the internal energy and the specific heat of the critical Ising model on the square M x N lattice with periodic boundary conditions. We find that N f and U are well-defined odd function of 1/N. We also find that ratios of subdominant (N^(-2 i - 1)) finite-size corrections amplitudes for the internal energy and the specific heat are constant. The free energy and the internal energy at the critical point are calculated asymtotically up to N^(-5) order, and the specific heat up to N^(-3) order.Comment: 18 pages, 4 figures, to be published in Phys. Rev. E 65, 1 February 200

    Random-cluster multi-histogram sampling for the q-state Potts model

    Get PDF
    Using the random-cluster representation of the qq-state Potts models we consider the pooling of data from cluster-update Monte Carlo simulations for different thermal couplings KK and number of states per spin qq. Proper combination of histograms allows for the evaluation of thermal averages in a broad range of KK and qq values, including non-integer values of qq. Due to restrictions in the sampling process proper normalization of the combined histogram data is non-trivial. We discuss the different possibilities and analyze their respective ranges of applicability.Comment: 12 pages, 9 figures, RevTeX

    A Manganin Foil Sensor for Small Uniaxial Stress

    Full text link
    We describe a simple manganin foil resistance manometer for uniaxial stress measurements. The manometer functions at low pressures and over a range of temperatures. In this design no temperature seasoning is necessary, although the manometer must be prestressed to the upper end of the desired pressure range. The prestress pressure cannot be increased arbitrarily; irreversibility arising from shear stress limits its range. Attempting larger pressures yields irreproducible resistance measurements.Comment: 3 pages, 3 figure

    On second order elliptic equations with a small parameter

    Full text link
    The Neumann problem with a small parameter (1ϵL0+L1)uϵ(x)=f(x)forxG,.uϵγϵ(x)G=0(\dfrac{1}{\epsilon}L_0+L_1)u^\epsilon(x)=f(x) \text{for} x\in G, .\dfrac{\partial u^\epsilon}{\partial \gamma^\epsilon}(x)|_{\partial G}=0 is considered in this paper. The operators L0L_0 and L1L_1 are self-adjoint second order operators. We assume that L0L_0 has a non-negative characteristic form and L1L_1 is strictly elliptic. The reflection is with respect to inward co-normal unit vector γϵ(x)\gamma^\epsilon(x). The behavior of limϵ0uϵ(x)\lim\limits_{\epsilon\downarrow 0}u^\epsilon(x) is effectively described via the solution of an ordinary differential equation on a tree. We calculate the differential operators inside the edges of this tree and the gluing condition at the root. Our approach is based on an analysis of the corresponding diffusion processes.Comment: 28 pages, 1 figure, revised versio

    Josephson-vortex-flow terahertz emission in layered high-TcT_c superconducting single crystals

    Full text link
    We report on the successful terahertz emission (0.6\sim1 THz) that is continuous and tunable in its frequency and power, by driving Josephson vortices in resonance with the collective standing Josephson plasma modes excited in stacked Bi2_2Sr2_2CaCu2_2O8+x_{8+x} intrinsic Josephson junctions. Shapiro-step detection was employed to confirm the terahertz-wave emission. Our results provide a strong feasibility of developing long-sought solid-state terahertz-wave emission devices
    corecore