99,935 research outputs found

    Gluon GPDs and Exclusive Photoproduction of a Quarkonium in Forward Region

    Full text link
    Forward photoproduction of J/ψJ/\psi can be used to extract Generalized Parton Distributions(GPD's) of gluons. We analyze the process at twist-3 level and study relevant classifications of twist-3 gluon GPD's. At leading power or twist-2 level the produced J/ψJ/\psi is transversely polarized. We find that at twist-3 the produced J/ψJ/\psi is longitudinally polarized. Our study shows that in high energy limit the twist-3 amplitude is only suppressed by the inverse power of the heavy quark mass relatively to the twist-2 amplitude. This indicates that the power correction to the cross-section of unpolarized J/ψJ/\psi can have a sizeable effect. We have also derived the amplitude of the production of hch_c at twist-3, but the result contains end-point singularities. The production of other quarkonia has been briefly discussed.Comment: Discussions of results are adde

    Entangling photons using a charged quantum dot in a microcavity

    Full text link
    We present two novel schemes to generate photon polarization entanglement via single electron spins confined in charged quantum dots inside microcavities. One scheme is via entangled remote electron spins followed by negatively-charged exciton emissions, and another scheme is via a single electron spin followed by the spin state measurement. Both schemes are based on giant circular birefringence and giant Faraday rotation induced by a single electron spin in a microcavity. Our schemes are deterministic and can generate an arbitrary amount of multi-photon entanglement. Following similar procedures, a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure

    Exact Ampitude Ratio and Finite-Size Corrections for the M x N Square Lattice Ising Model The :

    Full text link
    Let f, U and C represent, respectively, the free energy, the internal energy and the specific heat of the critical Ising model on the square M x N lattice with periodic boundary conditions. We find that N f and U are well-defined odd function of 1/N. We also find that ratios of subdominant (N^(-2 i - 1)) finite-size corrections amplitudes for the internal energy and the specific heat are constant. The free energy and the internal energy at the critical point are calculated asymtotically up to N^(-5) order, and the specific heat up to N^(-3) order.Comment: 18 pages, 4 figures, to be published in Phys. Rev. E 65, 1 February 200

    Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory

    Full text link
    By large scale Monte Carlo simulations it is shown that the stable fixed point of the SO(5) theory is either bicritical or tetracritical depending on the effective interaction between the antiferromagnetism and superconductivity orders. There are no fluctuation-induced first-order transitions suggested by epsilon expansions. Bicritical and tetracritical scaling functions are derived for the first time and critical exponents are evaluated with high accuracy. Suggestions on experiments are given.Comment: 11 pages, 8 postscript figures, Revtex, revised versio

    Impact of traffic management on black carbon emissions: a microsimulation study

    Get PDF
    This paper investigates the effectiveness of traffic management tools, includ- ing traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO2, NOx, and black carbon. The latter is among the most significant contributors of climate change, and is associated with many serious health problems. This study combines traffic microsimulation (S-Paramics) with emission modeling (AIRE) to simulate and predict the impacts of different traffic management measures on a number traffic and environmental Key Performance Indicators (KPIs) assessed at different spatial levels. Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project

    Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors

    Full text link
    We compare different scenarios for the low temperature splitting of the zero-energy peak in the local density of states at (110) surfaces of d_{x^2-y^2}-wave superconductors, observed by Covington et al. (Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the Bogolyubov-de Gennes treatment we find a surface phase transition towards a time-reversal symmetry breaking surface state carrying spontaneous currents and an s+id-wave state. Alternatively, we show that electron correlation leads to a surface phase transition towards a magnetic state corresponding to a local spin density wave state.Comment: 4 pages, 5 figure

    Statistical properties of the low-temperature conductance peak-heights for Corbino discs in the quantum Hall regime

    Full text link
    A recent theory has provided a possible explanation for the ``non-universal scaling'' of the low-temperature conductance (and conductivity) peak-heights of two-dimensional electron systems in the integer and fractional quantum Hall regimes. This explanation is based on the hypothesis that samples which show this behavior contain density inhomogeneities. Theory then relates the non-universal conductance peak-heights to the ``number of alternating percolation clusters'' of a continuum percolation model defined on the spatially-varying local carrier density. We discuss the statistical properties of the number of alternating percolation clusters for Corbino disc samples characterized by random density fluctuations which have a correlation length small compared to the sample size. This allows a determination of the statistical properties of the low-temperature conductance peak-heights of such samples. We focus on a range of filling fraction at the center of the plateau transition for which the percolation model may be considered to be critical. We appeal to conformal invariance of critical percolation and argue that the properties of interest are directly related to the corresponding quantities calculated numerically for bond-percolation on a cylinder. Our results allow a lower bound to be placed on the non-universal conductance peak-heights, and we compare these results with recent experimental measurements.Comment: 7 pages, 4 postscript figures included. Revtex with epsf.tex and multicol.sty. The revised version contains some additional discussion of the theory and slightly improved numerical result
    • …
    corecore