2 research outputs found

    Rare diseases' genetic newborn screening as the gateway to future genomic medicine: the Screen4Care EU-IMI project

    No full text
    Following the reverse genetics strategy developed in the 1980s to pioneer the identification of disease genes, genome(s) sequencing has opened the era of genomics medicine. The human genome project has led to an innumerable series of applications of omics sciences on global health, from which rare diseases (RDs) have greatly benefited. This has propelled the scientific community towards major breakthroughs in disease genes discovery, in technical innovations in bioinformatics, and in the development of patients' data registries and omics repositories where sequencing data are stored. Rare diseases were the first diseases where nucleic acid-based therapies have been applied. Gene therapy, molecular therapy using RNA constructs, and medicines modulating transcription or translation mechanisms have been developed for RD patients and started a new era of medical science breakthroughs. These achievements together with optimization of highly scalable next generation sequencing strategies now allow movement towards genetic newborn screening. Its applications in human health will be challenging, while expected to positively impact the RD diagnostic journey. Genetic newborn screening brings many complexities to be solved, technical, strategic, ethical, and legal, which the RD community is committed to address. Genetic newborn screening initiatives are therefore blossoming worldwide, and the EU-IMI framework has funded the project Screen4Care. This large Consortium will apply a dual genetic and digital strategy to design a comprehensive genetic newborn screening framework to be possibly translated into the future health care

    Critical care admission following elective surgery was not associated with survival benefit:prospective analysis of data from 27 countries

    No full text
    Purpose: As global initiatives increase patient access to surgical treatments, there is a need to define optimal levels of perioperative care. Our aim was to describe the relationship between the provision and use of critical care resources and postoperative mortality. Methods: Planned analysis of data collected during an international 7-day cohort study of adults undergoing elective in-patient surgery. We used risk-adjusted mixed-effects logistic regression models to evaluate the association between admission to critical care immediately after surgery and in-hospital mortality. We evaluated hospital-level associations between mortality and critical care admission immediately after surgery, critical care admission to treat life-threatening complications, and hospital provision of critical care beds. We evaluated the effect of national income using interaction tests. Results: 44,814 patients from 474 hospitals in 27 countries were available for analysis. Death was more frequent amongst patients admitted directly to critical care after surgery (critical care: 103/4317 patients [2%], standard ward: 99/39,566 patients [0.3%]; adjusted OR 3.01 [2.10–5.21]; p < 0.001). This association may differ with national income (high income countries OR 2.50 vs. low and middle income countries OR 4.68; p = 0.07). At hospital level, there was no association between mortality and critical care admission directly after surgery (p = 0.26), critical care admission to treat complications (p = 0.33), or provision of critical care beds (p = 0.70). Findings of the hospital-level analyses were not affected by national income status. A sensitivity analysis including only high-risk patients yielded similar findings. Conclusions: We did not identify any survival benefit from critical care admission following surgery
    corecore