10 research outputs found

    A CsI hodoscope on CSHINE for Bremsstrahlung {\gamma}-rays in Heavy Ion Reactions

    Full text link
    Bremsstrahlung γ\gamma production in heavy ion reactions at Fermi energies carries important physical information including the nuclear symmetry energy at supra-saturation densities. In order to detect the high energy Bremsstrahlung γ\gamma rays, a hodoscope consisting of 15 CsI(Tl) crystal read out by photo multiplier tubes has been built, tested and operated in experiment. The resolution, efficiency and linear response of the units to γ\gamma rays have been studied using radioactive source and (p,γ)({\rm p},\gamma) reactions. The inherent energy resolution of 1.6%+2%/Eγ1/21.6\%+2\%/E_{\gamma}^{1/2} is obtained. Reconstruction method has been established through Geant 4 simulations, reproducing the experimental results where comparison can be made. Using the reconstruction method developed, the whole efficiency of the hodoscope is about 2.6×10−42.6\times 10^{-4} against the 4π4\pi emissions at the target position, exhibiting insignificant dependence on the energy of incident γ\gamma rays above 20 MeV. The hodoscope is operated in the experiment of 86^{86}Kr + 124^{124}Sn at 25 MeV/u, and a full γ\gamma energy spectrum up to 80 MeV has been obtained.Comment: 9 pages, 19 figure

    Probing high-momentum component in nucleon momentum distribution by neutron-proton bremsstrahlung {\gamma}-rays in heavy ion reactions

    Full text link
    The high momentum tail (HMT) of nucleons, as a signature of the short-range correlations in nuclei, has been investigated by the high-energy bremsstrahlung γ\gamma rays produced in 86^{86}Kr + 124^{124}Sn at 25 MeV/u. The energetic photons are measured by a CsI(Tl) hodoscope mounted on the spectrometer CSHINE. The energy spectrum above 30 MeV can be reproduced by the IBUU model calculations incorporating the photon production channel from npnp process in which the HMTs of nucleons is considered. A non-zero HMT ratio of about 15%15\% is favored by the data. The effect of the capture channel np→dγnp \to d\gamma is demonstrated

    Revisit to the yield ratio of triton and 3^3He as an indicator of neutron-rich neck emission

    Full text link
    The neutron rich neck zone created in heavy ion reaction is experimentally probed by the production of the A=3A=3 isobars. The energy spectra and angular distributions of triton and 3^3He are measured with the CSHINE detector in 86^{86}Kr +208^{208}Pb reactions at 25 MeV/u. While the energy spectrum of 3^{3}He is harder than that of triton, known as "3^{3}He-puzzle", the yield ratio R(t/3He)R({\rm t/^3He}) presents a robust rising trend with the polar angle in laboratory. Using the fission fragments to reconstruct the fission plane, the enhancement of out-plane R(t/3He)R({\rm t/^3He}) is confirmed in comparison to the in-plane ratios. Transport model simulations reproduce qualitatively the experimental trends, but the quantitative agreement is not achieved. The results demonstrate that a neutron rich neck zone is formed in the reactions. Further studies are called for to understand the clustering and the isospin dynamics related to neck formation

    Patterns and mechanisms of coseismic and postseismic slips of the 2011 M W 7.1 Van (Turkey) earthquake revealed by multi-platform synthetic aperture radar interferometry

    Full text link
    On 23rd October 2011, a MW 7.1 reverse slip earthquake occurred in the Bardakçı-Saray thrust fault zone in the Van region, Eastern Turkey. Earlier geodetic studies have found different slip distributions in terms of both magnitude and pattern. In this paper, we present several COSMO-SkyMED (CSK), Envisat ASAR and RADARSAT-2 interferograms spanning different time intervals, showing that significant postseismic signals can be observed in the first three days after the mainshock. Using observations that combine coseismic and postseismic signals is shown to significantly underestimate coseismic slip. We hence employed the CSK pair with the minimum postseismic signals to generate one conventional interferogram and one along-track interferogram for further coseismic modelling. Our best-fit coseismic slip model suggests that: (1) this event is associated with a buried NNW dipping fault with a preferable dip angle of 49° and a maximum slip of 6.5 m at a depth of 12 km; and (2) two unequal asperities can be observed, consistent with previous seismic solutions. Significant oblique aseismic slip with predominant left-lateral slip components above the coseismic rupture zone within the first 3 days after the mainshock is also revealed by a postseismic CSK interferogram, indicating that the greatest principal stress axis might have rotated due to a significant stress drop during the coseismic rupture

    Prediction and Aerodynamic Analysis of Interior Noise and Wind Drag Generated by the Outside Rear-View Mirror for Commercial Vehicles

    No full text
    The outside rear-view mirror (OSRVM) is installed on the vehicle’s surface, which causes unwanted aerodynamic noise and wind drag during driving. It is important to use simulation methods to predict the performance of aerodynamic noise and wind drag of commercial vehicles due to the OSRVM. Considering the wind drag of the OSRVM, a combinational simulation strategy is employed to calculate external flow and interior acoustic fields of commercial vehicles, respectively. The flow field is computed a priori with an incompressible flow solver. The acoustic field was then computed based on the information extracted from the CFD solver. To obtain the interior noise level at the driver’s ears, a vibroacoustic model is used to calculate the response of the window glass structure and interior cavities, where the unsteady aerodynamic pressure loading on the two side windows’ surface is treated as the acoustic source field. The paper provides flow field and acoustic simulations for three OSRVM configuration models. The results are compared to data obtained in road sliding test measurement on the commercial vehicle. The accuracy of the hybrid simulation method is proved, and the comparative analyses verify that the OSRVM B model dramatically reduces the interior noise and wind drag of commercial vehicles

    Halogen-Modified Iron-Based Metal–Organic Frameworks for Remarkably Improved Electrocatalytic Oxygen Evolution

    No full text
    Iron-based metal–organic frameworks (MOFs) have shown potential as catalysts for the electrocatalysis oxygen evolution reaction (OER). Despite numerous methods being employed to enhance the OER performance of MOFs, the influence of halogen-containing linkers on the electronic structure of iron-based MOF catalysts remains unexplored. In this study, a series of Fe-based MOFs (denoted as MOF-R, where R = H, Cl, or Br) with comparable structures are synthesized by changing the organic linkers coordinated with the Fe metal active center, with the aim of investigating the influence of halogen-containing linkers on the OER activity. Significantly, MOF-Br exhibited superior OER activity compared to MOF-Cl and MOF-H. Density functional theory calculations reveal that the tuning of halogen groups on organic linkers can modulate the electronic structure of the metal active sites and effectively regulate the adsorption behavior of key intermediates near the optimal d-band center, leading to the enhancement of electroactivity. Notably, the bromine-substituted MOF-Br catalyst displayed remarkable intrinsic OER activity, including a low overpotential of 251.2 mV at a current density of 10 mA cm–2 and a low Tafel slope of 44.5 mV dec–1, surpassing the halogen-unsubstituted MOF-H (262.6 mV and 63.4 mV dec–1) and commercial IrO2 (335.3 mV and 98.6 mV dec–1). Moreover, the high turnover frequency at an overpotential of 300 mV was measured to be 0.537 s–1, which is 30 times greater than that of the commercial IrO2 catalyst (0.018 s–1). This research offers a potential strategy for designing MOF electrocatalysts with superior OER activity, laying a solid foundation for the rational design and synthesis of excellent OER electrocatalysts in the future

    Exploration of grid scheme for Frisch-grid ionization chamber

    No full text
    A new Frisch-grid ionization chamber has been built to explore the appropriate choice of Frisch-grid. Detailed studies of the relationship between grid geometries and detector performance have been performed with an 241^{241}Am source. This paper describes and compares the energy resolution of ionization chambers with parallel-wire and mesh grids of different grid parameters. Some specific recommendations for grid selection are provided based on the data currently available. To obtain optimal energy resolution, the operating voltage of the chamber must satisfy the condition of minimum electron collection on the grid with distinct geometries and parameters, respectively. Since there is no established theory applicable to both types of grids, we have devised a careful simulation procedure incorporating the COMSOL and Garfield++ codes to search for the conditions of the minimum electron collection on the grid. The simulation results fit the experimental data well, suggesting that this simulation method successfully predicts the suitable voltage setting when using a mesh grid or parallel wires grid as the shielding electrode

    New trapezoid-shaped Frisch-grid ionization chamber for low-energy particle measurements

    No full text
    A new trapezoid-shaped Frisch-grid ionization chamber (TFG-IC) has been built as a part of a ΔE−E\varDelta {E}-E telescope system for the detection and identification of charged particles at energies down to a few MeV. To study the effect of the drift electric field uniformity, two types of sealed windows, namely a pair of SSA (split-strip aluminized mylar film) and a pair of DSA (double-sided aluminized mylar film) sealed windows have been investigated. The detector’s performances were studied using a standard 241^{241}Am source at different gas pressures, and the total energy-deposit resolution achieved is about 1.1%(FWHM). The ΔE−E\varDelta {E}-E telescope, which was composed of TFG-IC and a DSSSD (double-sided silicon strip detector), has been tested using a three-component α\alpha source and the 241^{241}Am source under laboratory conditions. The results show that the energy resolution with the SSA sealed windows which provide uniform drift electric field has a smaller fluctuation than that with the DSA ones; the fluctuations are about 1% and 4% for the former and the latter, respectively. Simulations using the COMSOL software also confirmed the electric-field distortion at the edge of the detector with the DSA windows. A correlation curve between energy resolution and energy deposit of charged particles at various gas pressures and for two gas species is derived for TFG-IC with the SSA sealed windows using the measurement with the 241^{241}Am source. Incorporating the above results, we performed Monte Carlo simulations to evaluate the particle-identification capability of the telescope. The results show that the telescope can be extended to the identification of low-energy particles

    Probing high-momentum component in nucleon momentum distribution by neutron-proton bremsstrahlung γ-rays in heavy ion reactions

    No full text
    The high momentum tail (HMT) of nucleons, as a signature of the short-range correlations in nuclei, has been investigated by the high-energy bremsstrahlung γ rays produced in 86Kr+124Sn at 25 MeV/nucleon. The energetic photons are measured by a CsI(Tl) hodoscope mounted on the spectrometer CSHINE. The energy spectrum ≥35 MeV can be reproduced by the Isospin- and Momentum-Dependent Boltzmann-Uehling-Uhlenbeck model calculations incorporating the photon production channel from np process in which the HMTs of nucleons is considered. A non-zero HMT ratio of about 15% is favored by the data. The effect of the capture channel np→dγ is demonstrated
    corecore