102 research outputs found

    FORB: A Flat Object Retrieval Benchmark for Universal Image Embedding

    Full text link
    Image retrieval is a fundamental task in computer vision. Despite recent advances in this field, many techniques have been evaluated on a limited number of domains, with a small number of instance categories. Notably, most existing works only consider domains like 3D landmarks, making it difficult to generalize the conclusions made by these works to other domains, e.g., logo and other 2D flat objects. To bridge this gap, we introduce a new dataset for benchmarking visual search methods on flat images with diverse patterns. Our flat object retrieval benchmark (FORB) supplements the commonly adopted 3D object domain, and more importantly, it serves as a testbed for assessing the image embedding quality on out-of-distribution domains. In this benchmark we investigate the retrieval accuracy of representative methods in terms of candidate ranks, as well as matching score margin, a viewpoint which is largely ignored by many works. Our experiments not only highlight the challenges and rich heterogeneity of FORB, but also reveal the hidden properties of different retrieval strategies. The proposed benchmark is a growing project and we expect to expand in both quantity and variety of objects. The dataset and supporting codes are available at https://github.com/pxiangwu/FORB/.Comment: NeurIPS 2023 Datasets and Benchmarks Trac

    Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain

    Get PDF
    Although recent studies have revealed more widespread occurrences of magnetofossils in pre-Quaternary sediments than have been previously reported, their significance for paleomagnetic and paleoenvironmental studies is not fully understood. We present a paleo- and rock-magnetic study of late Miocene marine sediments recovered from the Guadalquivir Basin (SW Spain). Well-defined paleomagnetic directions provide a robust magnetostratigraphic chronology for the two studied sediment cores. Rock magnetic results indicate the dominance of intact magnetosome chains throughout the studied sediments. These results provide a link between the highest-quality paleomagnetic directions and higher magnetofossil abundances. We interpret that bacterial magnetite formed in the surface sediment mixed layer and that these magnetic particles gave rise to a paleomagnetic signal in the same way as detrital grains. They, therefore, carry a magnetization that is essentially identical to a post-depositional remanent magnetization, which we term a bio-depositional remanent magnetization. Some studied polarity reversals record paleomagnetic directions with an apparent 60-70 kyr recording delay. Magnetofossils in these cases are interpreted to carry a biogeochemical remanent magnetization that is locked in at greater depth in the sediment column. A sharp decrease in magnetofossil abundance toward the middle of the studied boreholes coincides broadly with a major rise in sediment accumulation rates near the onset of the Messinian salinity crisis (MSC), an event caused by interruption of the connection between the Mediterranean Sea and the Atlantic Ocean. This correlation appears to have resulted from dilution of magnetofossils by enhanced terrigenous inputs that were driven, in turn, by sedimentary changes triggered in the basin at the onset of the MSC. Our results highlight the importance of magnetofossils as carriers of high-quality paleomagnetic and paleoenvironmental signals even in dominantly terrigenous sediments.This study was funded by the Guadaltyc project (MINECO, CGL2012–30875), ARC grant DP120103952, and NSFC grant 41374073

    Estimating the concentration of aluminum-substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations

    No full text
    Hematite and goethite in soils are often aluminum(Al) substituted, which can dramatically change their and magnetic properties and bias abundance estimates using diffuse reflectance spectroscopy (DRS) and magnetic techniques. In this study, synthetic Al-substituted hematites and goethites and two Chinese loess/paleosol sequences were investigated to test the feasibility and limitations of estimating Al-hematite and Al-goethite concentration. When Al substitution is limited (Al/(Al+ Fe) molar ratio<~8%), the reflectance spectrumprovides a reliable estimate of the goethite/hematite concentration ratio. New empirical relationships between the DRS band intensity ratio and the true concentration goethite/hematite ratio are estimated as goethite/hematite= 1.56 × (I₄₂₅ nm/I₅₃₅ nm) or goethite/hematite= 6.32 × (I₄₈₀ nm/I₅₃₅ nm), where I₄₂₅ nm, I₄₈₀ nm, and I₅₃₅ nm are the amplitudes of DRS second-derivative curves for characteristic bands at ~425 nm, ~480 nm, and ~535 nm, respectively. High Al substitution (> ~8%) reduces DRS band intensity, which leads to biased estimates of mineral concentration. Al substitution and grain size exert a control on coercivity distributions of hematite and goethite and, thus, affect the hard isothermal remanent magnetization. By integrating DRS and magneticmethods, we suggest a way to constrain hematite and goethite Al substitution in natural loess. Results indicate that hematite and goethite in Chinese loess have Al contents lower than ~8% and, thus, that DRS can be used to trace hematite and goethite concentration variations.This study was supported by the National Natural Science Foundation of China (41374073 and 41430962), the National Program on Global Changes and Air-Sea Interaction (GASI-04-01-02), and the Chinese Continental Shelf Deep Drilling Program (GZH201100202). Pengxiang Hu was further supported by the China Scholarship Council ([2013] 3009). David Heslop and Andrew Roberts were supported by Australian Research Council Discovery Project DP110105419

    An integrated natural remanent magnetization acquisition model for the Matuyama-Brunhes reversal recorded by the Chinese loess

    Get PDF
    Geomagnetic polarity reversal boundaries are key isochronous chronological controls for the long Chinese loess sequences, and further facilitate paleoclimatic correlation between Chinese loess and marine sediments. However, owing to complexity of postdepositional remanent magnetization (pDRM) acquisition processes related to variable dust sedimentary environments on the Chinese Loess Plateau (CLP), there is a long-standing dispute concerning the downward shift of the pDRM recorded in Chinese loess. In this study, after careful stratigraphic correlation of representative climatic tie points and the Matuyama-Brunhes boundaries (MBB) in the Xifeng, Luochuan, and Mangshan loess sections with different pedogenic environments, the downward shift of the pDRM is semiquantitatively estimated and the acquisition model for the loess natural remanent magnetization (NRM) is discussed. The measured MB transition zone has been affected by the surficial mixing layer (SML) and remagnetization. Paleoprecipitation is suggested to be the dominant factor controlling the pDRM acquisition processes. Rainfall-controlled leaching would restrict the efficiency of the characterized remanent magnetization carriers aligning along the ancient geomagnetic field. We conclude that the MBB in the central CLP with moderate paleoprecipitation could be considered as an isochronous chronological control after moderate upward adjustment. A convincing case can then be made to correlate L8/S8 to MIS 18/1

    Continental-scale magnetic properties of surficial Australian soils

    Get PDF
    Soil magnetism reflects the physical properties of mainly iron oxide and oxyhydroxide minerals, which provides important information for deciphering soil environments. Establishing national scale soil magnetic databases can provide important reference information that can assist mineral surveying and agricultural planning. Our aims are to provide visualizations and to describe multiple magnetic properties across Australia, to evaluate the relationship between soil magnetism and soil forming factors, and to interpret the mechanisms responsible for surface soil magnetism in Australia. We present the first surficial Australian soil magnetic database, which contains 471 topsoil samples of natural and unpolluted materials. The samples were characterized with detailed magnetic measurements, which show that the magnetic properties of Australian soils vary considerably, but most surficial soils have small concentrations of coarse-grained magnetic minerals. The vast central Australian interior is characterized by weak magnetism, with more hematite and goethite contribution. Strong magnetic hotspots occur in the northwestern plateau, Nullarbor Plain, and eastern highlands. Parent material acts as the dominant control on soil magnetic properties, influencing magnetic mineral concentration and grain size, and controlling the contribution and relative importance of hematite to goethite. Temperature and rainfall both have a weak negative influence on superfine ferrimagnetic particles, due to progressive transformation to hematite and particle migration driven by intensive rainfall in sandy soils. Biota and land use changes tend to have a more complex and integrated local influence on hematite and goethite formation and preservationThis work was supported by the Australian Research Council through grants DP160100805 and DP19010087
    • 

    corecore